
Why Use Scheme?

Clinton Ebadi

January 2002

1 What is Scheme?

Scheme is a small dialect of LISP. The GNU version of
Scheme is Guile1. The current stable release of Guile
(1.4) is not fully compliant with the current standard,
but the unstable versions of Guile (1.5 or 1.7) avail-
able from the Guile CVS repository are. Scheme has
a small amount of syntax, and generally “gets out
of your way.” Unlike languages like C, you do not
have to deal with complicated memory management;
Scheme is garbage collected2. With Scheme (Guile
in particular), you can even extend the core language
with C (or the other way around). This article will
discuss GNU Guile Scheme.

2 Getting Guile Scheme

Getting Guile Scheme is fairly easy. The easiest way
to get it is to install packages from your distribution.
To install Guile for Debian, simply
apt-get install guile1.4. This will get you Guile
1.4, which does not have as many features as Guile
1.5 or 1.7. You can download the Guile Source from
http://www.gnu.org/software/guile. Compilation of
Guile is just as easy as with any other Autoconf based
program:

./configure
make
su -c ’make install’

1http://www.gnu.org/software/Guile
2That is, the Scheme environment frees memory for you

when the last reference to an object is destroyed

You may want to pass --with-threads to configure
to enable threading support. If you want to be bleed-
ing edge, you can grab Guile 1.7 from CVS: (just hit
enter when login asks for a password)

export CVSROOT=:pserver:anoncvs@\
subversions.gnu.org:/cvsroot/guile
cvs login
cvs co guile/guile-core

To compile you must first run autogen.sh
from the source directory. Remember to add
--enable-maintainer-mode to configure so it auto-
matically updates your configure script and makefiles.

3 Learning Scheme

In order for the rest of the article to make sense,
you need to actually know some Scheme. If you have
never used Scheme before I recommend reading Teach
Yourself Scheme in Fixnum Days3 before you start
the rest of the article. If you do not have to the time
to do so, here is a quick overview of the language.

3.1 Data

Every in Scheme is a Symbolic Expression or sim-
ply a S-expression. The basic unit of a Scheme pro-
gram is the list. A list is data contained between two

3http://www.cs.rice.edu/˜dorai/t-y-Scheme

1



2 Why Use Scheme?

parenthesis. This is very powerful because the pro-
gram is data and the data is the program. You can
use the eval command to evaluate an S-expression.
This is useful if you want to allow a user to enter
data as a program. The basic built in data types
are: booleans, characters, strings, numbers, vectors,
and lists. Booleans have two possible values: #t and
#f. Every value other than #f is true. Characters are
written in the form #\c where “c” is an ASCII charac-
ter. Strings are composed of characters, and are writ-
ten like strings are in most other languages (between
quotation marks). Numbers are just like numbers in
any other language, except that they can represent
any rational number exactly (e.g. 1/3). Scheme num-
bers can also be complex when written in the form
a+bi. (e.g. 1+1i or 1-1i).Vectors contain other da-
ta elements. A vector is created using make-vector
which takes an integer argument (the size of the vec-
tor) or vector which takes the elements of the vec-
tor as its arguments. Vectors cannot be resized af-
ter they have been created. Lists, however, can. A
list is created using make-list or list (which have
the same effect as the versions for vectors). Where
accessing an element in a vector is a constant time
operation, accessing an element is a linear time op-
eration (where “n” is the number of the element in
the list). To define a variable you use define. For
example (define foo 5) will create a new variable
named “foo” that is a number. To set the value of an
existing variable you use set!.

3.2 Functions

Functions are created using the lambda keyword.
A function is a normal variable, just like any oth-
er type. This makes Scheme extremely flexible.
To create a function that takes a fixed number
of arguments you write (lambda (a b c) [body])
where you write the names of the variables (e.g.
(lambda (x y) [body])+) takes two arguments).
To take any number of arguments you simply
write (lambda x [body]) where “x” is any vari-
able name. This will put the values of the vari-
ables that the function was called with into a list

bound to the symbol “x.” To create a func-
tion that has a certain number of required argu-
ments and one or more optional arguments, use
the notation (lambda (x y . z) [body]). This
causes any arguments above the required two to
be stored in the list “z.” In Scheme, you al-
ways pass variables by value. There are no ref-
erences. For vectors, however, you only copy the
pointer to the vector so when you modify the vec-
tor you are modifying it in place. Lambda creates
an anonymous function. You can call it imme-
diately like this ((lambda (x y) (+ x y)) 5 6).
That will call the function with the arguments
“5” and “6.” A function returns the value of it-
s last expression, so this function would return
11. You can create a name function very easily:
(define foo (lambda (x y) (+ x y))). This will
bind the function to the variable “foo.” You can now
call the function using the name foo: (foo 5 6).

3.3 Symbols and Quoting

Symbols are variables too. A symbol is an iden-
tifier in Scheme (e.g. foo, list, vector, make-list).
You can make a symbol not evaluate to whatever
is bound to it (maybe nothing) by quoting it us-
ing ’ or ‘ (back quote). For example ’foo evalu-
ated to foo instead of the value that “foo” repre-
sents. The other type of quotation is called quasi-
quotation. You use the back quote character for this.
When you quasi quote something (e.g. a list) you
can unquote parts of it using , and ,@. For exam-
ple ‘(1 2 ,@(3 4) ,foo foo) will return this list
(assuming foo equals 5): (1 2 3 4 5 foo). Comma
unquotes an elements in a quasi quoted list. Comma-
at (“unquote and splice”) unquotes a list and splices
its elements into the current list.

3.4 Binding and Looping

To bind a variable to a value you can use define.
To set the value of an existing variable you use



FREE SOFTWARE, Vol 1, Issue 03, March 2002 3

set!. To introduce a new scope and create new
bindings for variables, you use let. Let is used
like this: (let ((var1 value) (var2 value) ...
(varX value)) [body]). This lets you temporar-

ily create variables, use them, and have them de-
stroyed when you exit the body of the let. Another
use of let is “named let.” “Named let” allows you
to loop. Example:

(let loop ((i 0))

(cond ((< i 5)

(display i)

(loop (+ i 1)))))

This will print 012345.

3.5 Conditionals

The main conditional forms in Scheme are if
and cond. If works like it does in C (e.g.
(if test exec-if-true exec-if-false)). Cond
takes the form

(cond

(test execute-if-true)

(test2 execute-if-true)

...

(else execute-if-all-tests false))

3.6 Ready to Go

That wasn’t much in the way of a tutorial, was it?
It should provide you with just enough knowledge
of Scheme to be able to read the rest of the article.
I suggest that you read Teach Yourself Scheme in
Fixnum Days if you want to actually use Scheme. I
skipped a large portion of the language and didn’t
go into any kind of real depth for the rest. What I
showed in this section was but a small glance into the
world of Scheme. To properly to an overview of the
essentials of the language I would have need at least
30 or so pages.

4 Should I Use Scheme?

Why use Scheme and not (say) C? A big reason is
numbers. Another is the ability for variables to hold
any type. There are also several reasons not to use
Scheme. One is speed, Guile Scheme is a lot slower
than C.

4.1 Yes

In Scheme, you can represent numbers like 1/3 exact-
ly. All numbers are also complex. You don’t have to
deal with special data types like _Complex in C. This
allows math to be done more simply. For example,
you can write a simple program that allows the user
to enter any number (complex or not) and a number
to raise it to. For the source, see figure ?? for the
source to this program.

Figure 1: Simple number program
(display "Please enter the number")

(define abi (read))

(display "Please enter the power")

(define n (read))

(display "Answer to numbern̂")

(display (expt number n))

(newline)

You also don’t have to deal with data types when
declaring variables; all variables can hold any type.
You can use type predicates (e.g. vector?) in your
functions after you have written the first version of
your program. This is a very powerful feature. Y-
ou can flesh out a design without having to worry
about types until you have to. This also frees you
from having to do type-checking in functions that y-
ou know will not have incorrect types as arguments
(usually because another function you wrote calls it).
With Scheme variables you get the flexibility of a C
void* with optional type safety and much easier us-
age. Functions are also normal variables. It would be
very easy to create a list or vector of callback func-
tions in Scheme; just add them into the data structure
like you would other variables.



4 Why Use Scheme?

Memory management is one of Scheme’s strong
points. Scheme uses garbage collection, so you do
not have to worry about it. Simply stop referring to
an object (e.g. re-assigning a variable) and the value
is marked as free and garbage collected. Languages
like Java also do this. Garbage collection is a very
powerful feature. The source of many bugs (in lan-
guages that you must manually manage memory in)
is memory management. Why have every program
deal with memory management manually when you
can do it all in one place? Of course, many people will
disagree, but whether garbage collection is the answer
is usually something that is true for some apps but
false for others.

Scheme’s syntax rules are very simple. The basic
rule is that lists are made up of atoms. Beyond
that, there isn’t much else. You can also extended
Scheme’s syntax using let-syntax. Being able to
extend the syntax of Scheme is one of the more com-
plicated features. Let-syntax is generally wrapped
by define-macro is most Scheme systems to allow
macros to be written more easily. Macros are much
more powerful in Scheme than they are in C. One
things that you can do with Scheme macros is gen-
erate new macros; something that cannot be done
with the C macro system. In Guile, you can define a
macro almost as easily as you would a function using
define-macro. The big difference is that you have to
return a form instead of a value. See figure ?? for an
example macro. Figure ?? returns a new functions
named printname where name is the name passed to
the macro. It prints name. It is, as the name implies,
a completely useless macro, but it does serve it’s pur-
pose of illustrating macros. What does this macro
return? If called with name as foo the result will be
what is show in figure ??.

One problem you may face when using a language
that doesn’t have namespaces is a clash between
named in two or more libraries that you use. The
generally accepted method of naming functions in a
library for C is to prefix the name of the library before
the functions (e.g. lt_dlopen for GNU ltdl). This
has one problem: you cannot rename the functions if

Figure 2: Simple (and useless) macro
(define-macro useless

(lambda (name)

(let ((sym

(string-append "print" (symbol->string

name))))

‘(define ,(string->symbol sym)

(lambda () (display ’,name)

(newline))))))

Figure 3: Expansion of a Simple Macro
((lambda (name)

(let ((sym

(string-append "print" (symbol->string

foo))))

(define printfoo

(lambda () (display ’foo) (newline)))))

foo)

two libraries clash. C++ has the namespace keyword
that defines new namespaces. You cannot easily re-
name a namespace. To do so you must do something
like this:

namespace bar {
#include <foo.h> // contains namespace foo
using foo;
};

Clearly, this can get tedious. Although Stan-
dard Scheme does not not have a module sys-
tem, Guile does. It is similar to the Common-
LISP package system. To use a module you cal-
l (use-modules (foo bar)). This will search for
foo/bar.x in your %load-path. X is an extension from
the -extensions are variables in the Scheme environ-
ment can be modified by your ~/.guile. The ability
to load modules is a nice feature, but it still doesn’t
solve the name clashing issue. You can easily prefix
the symbols from a module with anything you like so:

(use-modules ((foo bar)

:rename (symbol-prefix-proc

’bar:)))
This will prefix everything in the foo bar module
with bar:. This makes it easy to avoid name clash-
es. See the Guile reference manual for information on
creating your own modules (it is actually quite easy).



FREE SOFTWARE, Vol 1, Issue 03, March 2002 5

Programs are data. This is a big advantage that
Scheme (and LISP in general) has over other lan-
guages. Using eval, you can evaluate arbitrary da-
ta as a program. This allows the user to enter pro-
grams as data. A good example of this is the lis-
tener loop. The listener loop reads Scheme com-
mands and evaluates them. This allows you to in-
teractively enter programs. A very simple listener
loop written in Scheme is shown in figure ??. The
interaction-environment is the current environ-
ment that the script is being executed in. What other
use is there for eval? One good one would be to allow
users to enter Scheme programs while they used your
program. For example, you could have a text-mode
audio editing application and control the operations
on files using functions. You cannot do this in C us-
ing C. If you wanted something similar you can either
invent your own language or use (say) libguile as an
extension language (like glame4 does).

Want to make your application easily extendable?
With Scheme, it is easy. You could write a guile mod-
ule for your program and have extensions load this.
The extensions themselves would be put in a special
extension dir to be loaded in a loop using load until
readdir returns the eof-object (End Of File Ob-
ject). This can be accomplished by factoring your
applications innards into a library used by your pro-
gram and the extensions and providing a function to
hook into your program. The actual reading of the
files is a very simple loop and can be seen in Figure
??. To do the same in C would require dynamically
loading libraries and would be somewhat more com-
plicated and not portable (unless you used GNU ltdl).
Of course, the way I show it (using readdir) would
will only work with a Scheme system that supports
POSIX (like guile).

Figure 4: Simple Listener Loop
(let listen ()

(display "\nlistener> ")

(display

(eval (read) (interaction-environment)))

(listen))

4http://www.glame.de

Figure 5: Extension Loading Loop
(let ((extdir (opendir

"/usr/local/share/myapp/ext")))

(readdir extdir)

(readdir extdir) ; ignore . and ..

(let readfile ((file (readdir extdir)))

(cond ((not (eof-object? file)) ; if !EOF,

continue reading dir

(load file)

(readfile (readdir extdir))))))

If you want to write a graphical application using
Gtk+ or GNOME, then you can very easily use Guile.
There are full bindings for Gtk+ and GNOME, al-
though there are no bindings for the GtkExtra wid-
gets. Wrapping new widgets is easy (in theory). All
you have to do is write a def file for the widget. Get-
ting Guile-GNOME and Guile-Gtk is a bit of a hassle
with Guile 1.7, unless you download a few patches to
the source5. Writing Gtk+ applications is generally
easier in Scheme than in C. You don’t have to use
any of the many type-casting macros! If you don’t
like Gtk+, you can use the guile-tk TK bindings. At
one point there were bindings for Mesa, but they no
longer work.

4.2 No

If speed is a concern, then don’t use Guile Scheme.
Guile is currently interpreted. A byte-compiler has
been partially written, but development appears to
be stalled and it does not compile with the current
unstable version of Guile. There is also a JIT6 com-
piler, but that currently doesn’t support much at all
and it also appears to have made no progress in sev-
eral months.

If you need low level access to memory, then Scheme
probably won’t work for you. You won’t be writing
the next kernel using Scheme7. If you want to do low
level I/O, Guile does not provide very much for you.

5Available from http://lamer.hackedtobits.com/code/
scheme.html

6Just In Time
7Unless that kernel is Vapour, http://vapour.sf.net



6 Why Use Scheme?

You can open file descriptors and convert them in-
to Scheme ports, and then use Scheme read, write,
and Guile format to manipulate them, but you do
not have access to C read, write, or ioctl (to name
a few). If you absolutely need those, you can use
SWIG8 to generate wrappers (except for ioctl be-
cause it is a variadic function). Most of the time if
you are using low level I/O functions you want ac-
cess to the memory layout of what you are reading,
something you do not have access to in Scheme.

4.3 Working around Scheme’s Limitations

One should not ask the question “Scheme or C?”.
Why choose? You can have the strengths of both
languages with Guile. If you can’t do something eas-
ily in Scheme, then you can use libguile to write an
extension in C. If you would like to allow a user to
write scripts for your C program, then you can use
libguile to do the same thing. Writing Guile Scheme
extensions may be the topic of a future article. For
now, you should read the Guile Scheme reference
manual for more information on writing extensions
or extending your application with Scheme scripting.
One goal of the Guile project is to create transla-
tors for other scripting languages into Scheme. This
will allow the user to enter scripts in their favorite
language and then use it to control your program.
The HEAD branch of Guile (1.7) contains a transla-
tor for EMACS-LISP. It is currently the only trans-
lator. Extensions also provide a way to get the power
of Scheme with the speed of C. You can write your
most important functions in C and control them from
Scheme. Of course, the only reason to do that would
be for speed reasons (which could be mostly solved
by a working byte-compiler).

8http://www.swig.org

5 Example

You could implement something similar to
Qt’s signal/slot system very easily in Scheme.
Define three functions: connect, emit, and
remove-connections. Connect connects a signal
to a slot. A signal is represented by a symbol,
and passed to connect just like any other variable.
Connect then looks up the symbol in a hash table
(a built in data type in Guile). If the symbol is
not found, a new vector is added that contains the
list of callbacks. Once the symbol has been found
(or added to the table), the callback is be added
to the callbacks list. Emit is be defined to take
one or more arguments. The required argument is
the symbol that will have all of its callbacks called.
The optional arguments are the arguments that
the callbacks are called with. If the symbol is not
found in the table, an error will be printed. If the
symbol is found, the list of optional arguments will
be passed to the callback. To remove a connection
call remove-connections. Remove-connection
takes one argument: the signal to disconnect all of
its callbacks from. There are two major flaws in this
system: signals are created and stored globally, so
callbacks have no way of telling what object called
them. An easy way to work around this is to pass
the object to the callback. The other is that you
must disconnect all of the callbacks from a symbol,
and cannot disconnect one signal at a time (if you
were to use this in a production system, this would
have to be fixed). Another smaller flaw is that the
call to emit blocks the entire program while the
callbacks execute. A better system would execute the
callbacks in their own thread (but that introduces
nasty thread safety issues). For the source to the
system see figure ??.

To help the code make more sense, I will explain a few
of the procedures used here. Apply takes a procedure
and a list as arguments. It them splices the list into
its individual components and passes them as argu-
ments to the procedure (e.g. (apply foo ’(1 2 3))
calls foo with 1 2 3 as its arguments). Hash Tables
in Guile are a vector of pairs. Each pair contains a



FREE SOFTWARE, Vol 1, Issue 03, March 2002 7

key and the data. This is why I take the cdr of the
value returns by hash-get-handle (this removes the
key and gives me the callbacks). For-each takes at
least two arguments, the first being a functions and
the rest being lists. For-each then iterates through
the list arguments and calls the function with them.
I use it to apply the args list to each callback (using a
wrapper function around apply that takes one argu-
ment, the callback to apply args to). The rest should
make sense, if it doesn’t consult the Guile reference
manual.

What use is there for such a system? A threaded
version that allowed you to disconnect individual call-
backs from a signal and to associate signals with ob-
jects would be very useful for a GUI widget system
(just like the one used in Qt). Even this limited ver-
sion has some uses. Imagine you wrote a filter lan-
guage in Scheme. It takes files as input, applies user
selected transformations to its input, and then out-
puts the results. You could associate all of the user
selected transformation with a signal, read the files,
and then emit the signal for each file to apply the
transformations.



8 Why Use Scheme?

Figure 6: Simple Signal and “Slot” system
;; simple signal and callback library

;; Copyright (C) 2002 Clinton Ebadi

;; Covered under the GPL Version 2 or (at your option) any later version

;; %*sig-table is the signal/callback table

;; it starts out at 50 entries, but grows automatically

(define %*sig-table (make-hash-table 50))

(define connect ; connects a signal to a callback (or "slot")

(lambda (sig callback)

(if (not (symbol? sig)) #f) ; return false if sig is not a signal

(let ((found (hash-get-handle %*sig-table sig)))

(if found

(add-callback sig callback)

(begin ; else

(add-signal sig)

(add-callback sig callback))))

#t ))

(define add-callback ; adds a new callback to sig’s callback list

(lambda (sig callback)

(hash-set! %*sig-table sig (append

(cdr (hash-get-handle %*sig-table sig))

(list callback)))))

(define add-signal ; adds a new signal to the signal table

(lambda (sig)

(hash-create-handle! %*sig-table sig ’())))

(define remove-connections ; removes all of a signal’s connections

(lambda (sig)

(if (not (symbol? sig)) #f)

(if (hash-get-handle %*sig-table sig)

(hash-set! %*sig-table sig ’())

#f ))) ; return false if the signal does not exist

(define emit ; emits a signal and calls all of it’s callbacks

(lambda (signal . args)

(let ((callbacks (hash-get-handle %*sig-table signal)))

(cond ((not callbacks)

(display "Signal not found\n")
#f ) ; display error and return false

(else

(set! callbacks (cdr callbacks)) ; get just callbacks

(for-each

(lambda (x) (apply x args))

callbacks))))))



FREE SOFTWARE, Vol 1, Issue 03, March 2002 9

6 How You Can Help Guile

You can help Guile in a number of ways. The first
is to go to the Project section of the Guile web site9

and complete one of the listed project. You could also
work on the (mostly complete for 1.7) reference man-
ual. Several sections need to be rewritten and it can
always use some proofreading. A big project would
be to work on the guile byte compiler (available from
the Guile CVS Repository as guile/guile-vm). The
easiest way for you to help Guile is to tell others about
it (like I have with this article). A very useful project
would be to create bindings for popular C libraries.
A few good libraries to write bindings for would be
Xlib (for those times when you need raw X), Mesa
(for 3D graphics), SDL (graphics), ALSA (audio), or
KDE/Qt. KDE/Qt bindings could be generated from
the C bindings, or using GOOPS10 (which would re-
quire someone to rewrite parts of GOOPS in C).

7 Copyright Notice and Distribu-
tion Terms

Copyright c© 2002 Clinton Ebadi

Verbatim copying and distribution of this entire arti-
cle is permitted in any medium, provided this copy-
right notice is preserved. This document may be
modified provided that the original copyrights are p-
reserved, a copyright for the changes is added, the
article bears a notice that it has been modified, and
the license is not changed. This does not apply to the
source code included in the document.

All source code in this document is Copyright c© 2002
Clinton Ebadi and covered under the GPL Version 2
or (at your option) any later version.

9http://www.gnu.org/software/guile
10Guile Object Oriented Programming System


