Treecc: An Aspect-Oriented Approach to Writing Compilers

Rhys Weatherley

rweather@southern-storm.com.au

Jan 10, 2002

1 Introduction

The C# compiler in Portable. NET ! is built on top
of the “Tree Compiler Compiler” (treecc) utility
program. Treecc ? is distributed as Free Software
under the terms of the GNU General Public License.

This article provides some background of why treecc
came about. It discusses two common compiler im-
plementation techniques, and the reasons why they
often fail to manage the complexity of large program-
ming languages like C#.

We then discuss a new programming technique called
“Aspect-Oriented Programming”. Treecc is an
example of applying this technique to managing the
complexity of compiler construction.

2 Patterns and Compiler Design

Compiler writing is generally seen as a black art, but
in reality it isn’t all that hard. The basic compilation
steps are:

1. Conwert the program into an abstract syntaz tree.

2. Perform type-checking and semantic analysis on
the tree.

!Portable. NET Web Site,
http://www.southern-storm.com.au/portable_net.html.

2Treecc Web Site,
http://www.southern-storm.com.au/treecc.html.

68

3. Rearrange the tree to perform optimisations.

4. Conwvert the tree into the target code.

The difficulty in writing compilers is not the steps
involved, but rather the sheer number of tiny little
details to keep straight. Modern languages contain
large numbers of operators, which are all very similar,
but slightly different:

Add, substract, multiply, divide,
remainder, shift left, shift right, shift
right unsigned, bitwise and, bitwise or,
exclusive-or, negate, bitwise not, logical
not, logical and, logical or,

And that’s just the operators. Introduce statements,
arrays, type coercion, method invocation, and class
definition, and it becomes very easy to forget some-
thing amongst the forest of code.

In an attempt to control this complexity, two common
pattern-based approaches have arisen over the years:
Inheritance and Visitor.

The inheritance pattern can be characterised as fol-
lows:

1. Declare a node type for every syntactic elemen-
t in the language. All types ultimately inherit
from ¢ “‘Node’”’.

2. Declare virtual methods in ¢ ‘Node’’ for oper-
ations on node types: semantic analysis, opti-



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

69

mization, code generation, etc.

3. Override the virtuals in sub-classes to provide
the compiler implementation.

The visitor pattern can be characterised as follows:

1. Declare a node type for every syntactic elemen-
t in the language. All types ultimately inherit
from ¢ “Node’”’.

2. Declare a “¢Visitor’’ class with
abstract virtual methods such as
<‘yisitAdd’’,‘ ‘VisitSub’’,  ‘‘VisitIf’’,
“¢VisitFunction’’, etc. for all of the node

types.

3. Define a  ‘‘walking procedure’’  over
‘‘Node’’ objects for walking around a syntax
tree, making callbacks on a supplied visitor
object.

4. Create multiple classes that inherit from
“‘Visitor’’, one for each operation. Imple-
ment the ¢ ‘Visit*’’ functions for that type of
operation.

In the following sections, we will explore why these t-
wo patterns often fail to manage compiler complexity,
even when the programmer applies them rigorously.

3 The implementation language is
your worst enemy

We will start with the inheritance pattern. Consider
that we’ve written the following C# code during the
“declare all the node types” phase of the project:

public class UnaryExpression : Expression
{
protected Expression expr;
public UnaryExpression(Expression _expr)
{ expr = _expr; }
}
public class NegateExpression : UnaryExpression
{
public NegateExpression(Expression _expr)
: base(_expr) {}
}
public class UnaryPlusExpression : UnaryExpression
{
public UnaryPlusExpression(Expression _expr)
: base(_expr) {}
}
public class BitwiseNotExpression : UnaryExpression
{
public BitwiseNotExpression(Expression _expr)
: base(_expr) {}
}
}

We continue this process for several hundred other
node types, gradually building up the entire syntax
tree. This will probably take several weeks to com-
plete for a substantial language like C+#, assuming
that we are writing the parser alongside the node

types.

We now want to go in and implement type-checking,
so we modify the "UnaryExpression" class as fol-
lows:

DotGNU is a Free Software project to create a plat-
form for webservices that can be written in a variety
of different programming languages including Java

and C+#.

As Microsoft is trying to catch all e-commerce
in their .NET and lock everyone in. so we at
FSM believe DotGNU is a very important project
to protect our community, thus we have set this
column for it. With the support of DotGNU Project
developers, we will bring you more articles about

DotGNU core technologies in the future issues.




70 Treecc: An Aspect-Oriented Approach to Writing Compilers

public class UnaryExpression : Expression
{
protected Expression expr;
public UnaryExpression(Expression _expr)
{ expr = _expr; }
public override LanguageType TypeCheck()
{
LanguageType type = expr.TypeCheck();
if(type.IsInteger() || type.IsFloat())
{
return type;
}
throw new TypeCheckException();
}
}

We've put the common unary expression type-
checking code in a common base class. This makes
it easier to maintain because there is only one copy.
We continue the process over the next few weeks and
months for all the other operators, statements, and
declarations in the language. So far, so good.

Unfortunately, we've made a mistake. The
"BitwiseNot" operator is only legal on integer val-
ues; not floating-point.

But will we find this bug? It was several weeks a-
go when we first wrote the "BitwiseNotExpression"
class, and we have since forgotten all about it. It may
even have been written by another programmer on
the team, who has also forgotten all about it. When
we build our compiler, we don’t get any errors be-
cause the implemention language is perfectly happy
with the above code.

Surely testing will find it? We are building a test
suite alongside the code, right? Unfortunately, that
doesn’t help either. The test suite for a major lan-
guage will be at least as complex as the compiler it-
self, and so there is always the temptation to abstract
common tests into common test classes. We've just
shifted the bug into the test suite and given ourselves
a false sense of security.

So we keep coding for several more months, adding
lots more code. And then a really nasty bug pops up.
The "BitwiseNot" operator is acting strangely, and
we have no idea why. The system is now so complex,
with so many common base classes implementing fall-
back defaults, that tracking this down becomes very
hard.

The inheritance pattern has a fatal flaw. Adding a
new operation entails a very large maintainence bur-
den, because hundreds of classes must be modified.
This is very error-prone, so we try to abstract details
into common base classes. But this introduces other
errors.

The problem basically boils down to semantic anal-
ysis: the implementation language does not have e-
nough knowledge about the application domain to
spot the problem and warn us about it. So it happi-
ly compiles the code and leaves us to hang ourselves
on the system’s complexity later. Programming lan-
guages are supposed to help us manage complexity,
not make the problem worse!

I wrote a number of compilers using the inheritance
approach, and every single time the complexity killed
me. I needed fallback defaults for code maintainence
reasons, but using fallbacks introduced massive num-
bers of bugs. I was stuck.

4 Design Patterns Aren’t Always
What They Are Cracked Up to
Be

After much hair-pulling, I searched Design Patterns
by Gamma, et al . “Is there a better way of doing
this?”. Visitor patterns are the answer: the book
even gives a compiler example.

Visitors solve the “I forgot to implement the

Elements of

Addison-Wesley,

3Gamma, et al., Design Patterns:
Reusable Object-Oriented Software,
1995.



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

71

BitwiseNot” problem. Because every node type has
itsown ¢ ‘Visit*’’ method, we will get an error when
we try to build the compiler without implementing
the operation for a node type. Of course, this as-
sumes that we haven’t been dumb and implemented
fallback defaults in the ¢ ‘Visitor’’ base class.

Instead of using virtual methods, we can implement
visitors using switch statements over node types. e.g.

switch(node.type)

{
case Negate: ...
case UnaryPlus: ...
case BinaryNot: ...
+

However, switch statements have a similar flaw to in-
heritance: the implementation language will not warn
us if we forget to put in a case for every node type. It
will happily fall out through the “default” case with
no warning. Tracking down these bugs can be just
as hard as tracking down inheritance fallback bugs.
Using virtual methods is “safer”, if not quite as effi-
cient.

Unfortunately, there is a catch with visitors, as ex-
plained in Design Patterns:

Use the Visitor pattern when ...the classes defining
the object structure rarely change, but you often want
to define new operations over the structure. Chang-
ing the object structure classes requires redefining the
interface to all visitors, which is potentially costly.
If the object structure classes change often, then it’s
probably better to define the operations in those class-
es.

During the early stages of writing a compiler, the
node types change very frequently. This activates
the Achilles heel of the Visitor pattern, and creates
a maintainence nightmare. The book suggests that
we should use the inheritance approach to solve this
problem.

5 So Which One Do We Use? In-
heritance or Visitor?

The inheritance pattern becomes a problem when
new operations are needed. The solution is visitors.
Visitors become a problem when new node types are
needed. The solution is inheritance.

What we have is a situation that the design patterns
gurus didn’t consider: if the set of nodes and oper-
ations are both changing rapidly, then we will have
problems no matter what we do.

We need a solution that combines the strengths of
both patterns without the drawbacks of either. We
want the implementation language to catch us when
we forget something, but we also want it to handle
large numbers of nodes and operations smoothly. We
want to split different operations into different mod-
ules, but also keep them closely associated with the
node type.

None of the standard patterns provide this combi-
nation of functionality, because none of the existing
implementation languages support both styles of pro-
gram design at the same time.

6 Aspect-Oriented Programming

A new field in language design has emerged in recen-
t years called “Aspect-Oriented Programming?”
(AOP). A good review of the field can be found in
the October 2001 issue of the “Communications
of the ACM?” 4, and on the Aspect] Web site °.

The following excerpt from the introduction to the
AQP section in the CACM issue describes the essen-
tial aspects of AOP, and the difference between OOP
and AOP:

4 Aspect-Oriented Programming, Communications of the
ACM, October 2001.
5Aspect] Web Site, http://www.aspectj.org/.



72 Treecc: An Aspect-Oriented Approach to Writing Compilers

AOP is based on the idea that computer systems are
better programmed by separately specifying the vari-
ous concerns (properties or areas of interest) of a sys-
tem and some description of their relationships, and
then relying on mechanisms in the underlying AOP
environment to weave or compose them together into
a coherent program. ... While the tendancy in OOP’s
is to find commonality among classes and push it up
the inheritance tree, AOP attempts to realize scat-
tered concerns as first-class elements, and eject them
horizontally from the object structure.

Aspect-orientation gives us some hope of solving our
compiler complexity problems. When we moved from
the inheritance pattern to the visitor pattern, we were
attempting to eject the operations horizontally. But
it didn’t quite work as well as we had hoped: the
intrinsic complexity of the set of nodes kept interfer-
ing. AOP allows us to take the idea further, without
re-introducing the problems that visitors have.

We can view each operation on node types (semantic
analysis, optimization, code generation, etc) as an
“aspect” of the compiler’s construction. The AOP
language weaves these aspects with the node types
to create the final compiler.

However, we don’t really want to invent a complete-
ly new programming language for compiler construc-
tion. We would have to implement this new language
using all of the flawed techniques that makes writing
compilers hard. It’s a classic chicken and egg prob-
lem: we don’t want to replace a buggy compiler with
a buggy compiler implementation language.

We can strike a compromise, similar to that used by
lex and yacc. Those tools use a custom syntax for the
difficult parts, and a pre-existing underlying language
(usually C) to implement everything else. The code
is expanded by the tool and then compiled with the
underlying language’s compiler.

Treecc uses a domain-specific aspect-oriented pro-
gramming language for declaring and managing n-
odes and operations, and uses an underlying language
to implement the body of the operations. C, C++,

C#, or Java can be used as the underlying language,
depending upon your personal preference.

Treecc is about 13,000 lines of code in size, which is
relatively easy to debug by hand.

Aside: treecc does not support all of the AOP fea-
tures that are described in the literature. Treecc
weaves together classes from multiple method defini-
tions. Other AOP languages can also weave together
methods from fragments in multiple aspects. We con-
centrated on those AOP features that were useful for
compiler construction. Other features could be incor-
porated at a later date.

7 Using Treecc to Beat Inheri-
tance Bugs

Now that we’ve identified the problems of inheritance
and visitor patterns for compiler implementation, we
will show how treecc helps the programmer avoid
these traps.

The following is the treecc definition of our example
node types:

%option lang = "C#"
%node Expression %abstract %typedef

%node UnaryExpression Expression %abstract =
{
Expression expr;

}

%node NegateExpression UnaryExpression
%node UnaryPlusExpression UnaryExpression
#node BitwiseNotExpression UnaryExpression

Treecc converts this into a number of C# classes, one
for each node type. It also inserts helper methods for
testing the type of a node and for tracking source line
numbers. If the output language is C or C++, treecc
will also insert code for allocating large numbers of



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

73

nodes efficiently.

The type-checking operation (or “aspect”) is declared
as follows:

%operation %virtual LanguageType
TypeCheck(Expression e)

TypeCheck(NegateExpression),
TypeCheck(UnaryPlusExpression)

{
LanguageType type = e.expr.TypeCheck();
if(type.IsInteger() || type.IsFloat())
{
return type;
}
throw new TypeCheckException();
}
TypeCheck(BitwiseNotExpression)
{
LanguageType type = e.expr.TypeCheck();
if(type.IsInteger())
{
return type;
}
throw new TypeCheckException();
}

We have not declared the operation to cover
¢ ‘Expression’’ or ‘ ‘UnaryExpression’’. Instead,
we list all of the applicable subtypes explicitly. When
treecc is run on the above file, it will check that every
non-abstract node type is handled by an operation
case. If it finds a missing type, it will report an er-
ror. Let’s demonstrate that by adding a new unary
expression type:

%#node LogicalNotExpression UnaryExpression

eg.tc:17: node type ‘LogicalNotExpression’ is not
handled in operation ‘TypeCheck’

This is at the heart of treecc’s power: it performs
a large amount of semantic analysis over the node
types to determine if the programmer has forgotten
something. The programmer is notified of this early

in development process, when it is easier to fix the
problem.

As we discussed earlier, we want to implement com-
mon code in common base classes to improve code
sharing. However, this introduces hard to find bugs.
Treecc avoids the need to do this by allowing the pro-
grammer to attach multiple cases to the same code
block, as in the case of ‘‘NegateExpression’ and
¢ ‘UnaryPlusExpression’’ above.

An important feature of aspect-oriented languages is
aspect modularity: it should be possible to imple-
ment separate aspects in different parts of the code.
Treecc supports this by separating node and opera-
tion definitions. Operations do not need to be imple-
mented in the same file as the nodes to which they ap-
ply, and multiple operations on the same node types
can be scattered through-out the code.

Portable. NET takes this even further by separating
individual operations across multiple files for expres-
sions, statements, declarations, etc. This introduces
a clearer structure to the code that makes it easier
to navigate the source during compiler construction.
The semantic analysis routines in treecc ensure that
nothing is missed when all of the separate modules
are recombined.

8 Painless Visitors

The previous example used a ¢ ‘%virtual’’ opera-
tion, which is defined over all node types. Treecc in-
serts the virtual method body wherever it is required.

Sometimes we don’t want to define an operation as
a virtual method. We would prefer to use the visitor
approach. The following is what a visitor version of
"TypeCheck" would look like:



74 Treecc: An Aspect-Oriented Approach to Writing Compilers

%operation LanguageType
TypeChecker: : TypeCheck (Expression e)
= {null}

TypeCheck(NegateExpression),
TypeCheck(UnaryPlusExpression)

{
LanguageType type = TypeCheck(e.expr);
if(type.IsInteger() || type.IsFloat())
{
return type;
¥
throw new TypeCheckException();
}
TypeCheck(BitwiseNotExpression)
{
LanguageType type = TypeCheck(e.expr);
if (type.IsInteger())
{
return type;
¥
throw new TypeCheckException();
}

This is almost identical to the previous version, ex-
cept for the definition of the operation, and the call-
ing conventions for "TypeCheck". Behind the scenes,
treecc creates a class called "TypeChecker" that con-
tains a static method called "TypeCheck". This is the
visitor.

Interestingly, if we had used C as the underlying lan-
guage, then no changes are necessary to the bodies
of the operation cases. Only the "Yvirtual" key-
word changes. The C macro pre-processor is used to
smooth out the differences.

This illustrates another useful property of treecc: it
is very simple to flip operations between inhertance-
based virtuals and visitor-based non-virtuals. This
allows the programmer to start developing the com-
piler one way, change their mind, and quickly flip to
the other way.

Normally, changing inheritance-based code into
visitor-based code would entail a complete system
rewrite. Changing patterns with treecc is trivial.

This is a common property of aspect-oriented pro-
gramming languages: because the language takes care
of the inserting the aspects into the main classes, it
is easier to change the style of insertion without a
major system overhaul.

Non-virtual operations can be applied to multiple ar-
guments, which can be very useful when implement-
ing coercions:

%enum SimpleType =

{
Integer,
Long,
Float,
Error

}

%operation %inline SimpleType Binary::Coerce
([SimpleType typel], [SimpleType type2])
= {Error}

Coerce(Integer, Integer)
{
return Integer;

}

Coerce(Integer, Long),
Coerce(Long, Integer),
Coerce(Long, Long)
{

return Long;

}

Coerce(Integer, Float),
Coerce(Float, Integer),
Coerce(Long, Float),
Coerce(Float, Float)
{

return Float;

}

Coerce(Integer, Error),
Coerce(Error, Integer),
Coerce(Long, Error),
Coerce(Error, Long),
Coerce(Float, Error),
Coerce(Error, Float),
Coerce(Error, Error)

{

return Error;

b

Treecc turns this into a highly efficient nested switch
statement, which would be extremely difficult to de-



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

75

bug by hand. We actually left out one of the cases
above, so we get an error:

eg.tc:48: case ‘Float, Long’ is missing from
operation ‘Coerce’

Casts and coercions on primitive types can now be
implemented as simple table lookups, with treecc
checking the completeness of the table for us.

9 Conclusion and Future Direc-
tions

Treecc provides a new way to attack the complexity of
compiler implementation by automating error-prone
tasks. It performs a large amount of semantic analy-
sis on the program to ensure that common problems
are caught early in the development cycle.

Because treecc is based on an aspect-oriented foun-
dation, it allows the programmer to separate out con-
cerns and deal with them individually. Treecc puts
the whole system back together in the most efficient
manner possible.

The system is not necessarily complete. We’d like
to experiment with rule-based code generation tech-
niques. At present, optimizers and code generators
must be written by hand, as operations on node type-
S.

A rule-based system would make it easier to build
clever optimizers as a set of pattern matching direc-
tives. Operations are already a special class of pat-
tern matcher, but they don’t have any back-tracking
and retry capabilities.

Another area that treecc can be applied to is the
construction of “Just In Time” compilers. The first
phase of the JIT process is the reconstruction of the
intermediate code form of the program. This interme-

diate code typically takes the form of abstract syntax
trees or three-address statements.

Treecc is well-suited to the management of JIT in-
termediate forms. Register allocation, dynamic flow
analysis, and machine-dependent code generation can
be added as JIT aspects. We are currently exploring
the use of treecc to assist in the construction of a JIT
for Portable. NET

Copyright (©2001, 2002 Rhys Weatherley

Verbatim copying and distribution of this entire arti-
cle is permitted in any medium, provided this copy-
right notice is preserved.

About the Author Rhys Weatherley is a member
of the DotGNU Steering Committee, and the author
of Portable. NET.

Rhys graduated from The University of Queensland,
Brisbane, Australia, with an honours degree in Com-
puter Science in 1990. Since then, he has worked in
a number of positions at Australian universities and
US companies.

He returned to Australia in late 1999 to pursue his
own interests, including the founding of his Free Soft-
ware company, Southern Storm Software, Pty Ltd.

His computer interests include programming lan-
guage design and implementation, network comput-
ing, and user interfaces.

For our collecting translations of “free software” in the first issue,
we have received two new translations:

“prosto programje” in Slovenian, offered by Primoz Peterlin
<primoz.peterlin@biofiz.mf.uni-1j.si> on Jan 18, 2002;

“Programari LLiure” in Catalan, offered by Xavi Drudis Ferran
<xdrudis@tinet.org> on Feb 19, 2002. Catalan is a romance
language spoken by around ten million people.

Both of the languages have other different words to express the free
in “free of charge”.




