
From Database to Presentation via XML, XSLT and ConTEXt

Berend De Boer

berend@pobox.com

Jan 28, 2002

Berend de Boer wrote this article for “EuroTEX 2001, Proceedings of the Twelfth European TEX Conference”, Kerkrade, the

Netherlands, 23-27 September 2001, Dutch language oriented TEX Users Group (NTG), www.ntg.nl/eurotex, 2001), FSM thanks

the author and Simon Pepping <spepping@scaprea.hobby.nl>(the organizer of the conference and the publisher of the papers

collection), granted us the permission to publish it here freely. The figures in the original paper were generated by ConTEXt

directly, and we modified them with GIMP. — FSM

1 Introduction

Much data exists only in databases. A familiar example is an address list. Every once in a while this data
must be presented to humans. To continue with the address list example, annually an address list must be
printed and mailed.

In this article I attempt to given an exhaustive overview of going from structured data through ConTEXt to
output, see Figure 1.

As any data format can be represented by XML, this document focuses on typesetting data in XML in
ConTEXt, see Figure 2. When the data is in XML, in can be directly handled by ConTEXt. ConTEXt has a
built-in XML typesetting engine that can handle XML tags just fine. You don’t have to convert the XML to
ConTEXt macro’s first. This is the subject of the following section.

Figure 1: Going from Data through ConTEXt to Output

52

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 53

Figure 2: Going from XML through ConTEXt to Output

Figure 3: Going from XML through ConTEXt to Output

When the data is not yet in XML format, is has to be converted to XML. ‘Converting comma . . . ’ covers
converting comma separated data to XML. ‘Converting relational . . . ’ covers converting data residing in
relational databases such as DB/2 and InterBase to XML. ‘Typesetting sql . . . ’ covers going from such data
straight to ConTEXt without converting to XML first.

The XML data you have might not be easy to typeset. An advantage of XML is that it is easy to transform
into XML with a different format. There is a specific language, XSLT, to transform XML into XML, see
Figure 3. This is the subject of ‘Transforming XML . . . ’.

2 Typesetting XML in ConTEXt

This section assumes that the data to be typeset is already available in XML. The next sections cover
converting data to XML.

For this article a special XML format was chosen:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rows SYSTEM "example.dtd">

<rows>

<row>

<field>Re-introduction of Type 3 fonts into the TeX world</field>

<field>Wlodzimierz Bzyl</field>

54 From Database to Presentation via XML, XSLT and ConTEXt

</row>

<row>

<field>The Euromath System - a structure XML editor and browser</field>

<field>J. Chlebkov, J. Gurican, M. Nagy, I. Odrobina</field>

</row>

<row>

<field>Instant Preview and the TeX daemon</field>

<field>Jonathan Fine</field>

</row>

</rows>

This example files shows the first three entries in the abstract list of euroTEX 2001 at the time of this writing.
The DTD of this XML file is:

<!-- DTD used for examples in article "From database to

presentation via XML, XSLT and ConTeXt". -->

<!ELEMENT rows (row*)>

<!ELEMENT row (field*)>

<!ELEMENT field (#PCDATA)>

I still prefer DTDs above XML Schema’s. They’re far more readable and you can’t express all well-formed
XML files with XML Schema’s anyway, so what’s the advantage?

Our examples have the root tag <rows>. Our examples can have 0 or more <rows> tags. Each <rows> tag
can have zero or more <field> tags.

With ConTEXt we can typeset this with the processXMLfilegrouped macro:

\processXMLfilegrouped {example.xml}

The result of this is:
¶

µ

³

´

Re-introduction if Type 3 fonts into the TeX world Wlodzimierz Bzyl

The Euromath System - a structure XML editor and browser J. Chle-

bkov, J. Gurican, M.Nagy,I.Odrobina Instant Preview and the TeX

daemon Jonathan Fine

As you can see, this gives us just the plain text, no formatting is done. We can typeset our XML in a table
with adding the following definitions and processing it again:

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 55

\defineXMLenvironment [rows] \bTABLE \eTABLE

\defineXMLpickup [row] \bTR \eTR

\defineXMLpickup [field] \bTD \eTD

\processXMLfilegrouped {example.xml}

These definitions bind the start and end of a tag to a certain ConTEXt macro. Our result is now:

The above example uses the new table environment of ConTEXt. As this specific environment cannot yet split
across pages, the tabulate environment is a better choice for typesetting data. For this environment we need
the following definitions:

\defineXMLpickup [rows] {\starttabulate[|p(7cm)|p|]} \stoptabulate

\defineXMLpickup [row] \NC \NR

\defineXMLpickup [field] \relax \NC

\processXMLfilegrouped {example.xml}

Our result is now:

I hope I’ve made clear the basic ideas of typesetting XML:

1. Make sure the XML data is in a proper tabular format.

2. Define mappings to the ConTEXt table, tabular or TABLE environment.

3. Use processXMLfilegrouped to process your XML file.

56 From Database to Presentation via XML, XSLT and ConTEXt

3 Converting Comma Separated Files to XML

Not always is data in the proper format. This section and the next cover converting non XML data into XML
data.

Many programs can give CSV (Comma Separated Variable) data as output. An example of this format is:

"Fred","Flintstone",40

"Wilma","Flintstone",36

"Barney","Rubble",38

"Betty","Rubble",34

"Homer","Simpson",45

"Marge","Simpson",39

"Bart","Simpson",11

"Lisa","Simpson",9

In this format, fields are separated by comma’s. String fields can be surrounded by double quotes. In XML
this data should look like:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE rows SYSTEM "example.dtd">

<rows>

<row>

<field>Fred</field>

<field>Flintstone</field>

<field>40</field>

</row>

<row>

<field>Wilma</field>

<field>Flintstone</field>

<field>36</field>

</row>

<row>

<field>Barney</field>

<field>Rubble</field>

<field>38</field>

</row>

<row>

<field>Betty</field>

<field>Rubble</field>

<field>34</field>

</row>

<row>

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 57

<field>Homer</field>

<field>Simpson</field>

<field>45</field>

</row>

<row>

<field>Marge</field>

<field>Simpson</field>

<field>39</field>

</row>

<row>

<field>Bart</field>

<field>Simpson</field>

<field>11</field>

</row>

<row>

<field>Lisa</field>

<field>Simpson</field>

<field>9</field>

</row>

</rows>

Converting CSV to our ‘standard’ XML format can be done by a simple Perl script:

#!/usr/bin/perl -w use strict;

test arguments

if (@ARGV == 0)

{

die "Supply a filename as argument";

}

use Text::ParseWords;

open INPUT, "$ARGV[0]" or die "Can’t open input file $ARGV[0]: $!";

print "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n";

print "<!DOCTYPE rows SYSTEM \"example.dtd\">\n";

print "<rows>\n";

while (<INPUT>) {

chop;

my @fields = quotewords(",", 0, $_);

print "<row>\n";

58 From Database to Presentation via XML, XSLT and ConTEXt

my $i = 0;

foreach $field (@fields) {

print "\t<field>$field</field>\n";

$i++;

}

print "</row>\n";

}

print "</rows>\n";

Use this script as follows:

perl -w csv2xml.pl flintstones.csv > flintstones.xml

If you don’t know what Perl is, you can read more about it at http://www.perl.org. Most UNIX users have Perl
installed by default. Windows or Macintosh users can download Perl at http://www.cpan.org/ports/index.html.
I’m not a particular fan of Perl, I can’t remember the syntax if I’ve not used it for a few days. However, you
can count on it being available for almost all operating systems.

4 Converting Relational (SQL) Data to XML

Much of this worlds data resides in relational databases. It is not difficult to retrieve data from a relational
database and turn it into XML.

Consider the following SQL table:

create table "family member" (

"id_family member" smallint not null primary key,

"surname" character varying(30) not null,

"family name" character varying(40) not null,

"age" smallint not null);

And the following insert statements:

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (1, ’Fred’, ’Flintstone’, 40);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (2, ’Wilma’, ’Flintstone’, 36);

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 59

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (3, ’Barney’, ’Rubble’, 38);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (4, ’Betty’, ’Rubble’, 34);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (5, ’Homer’, ’Simpson’, 45);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (6, ’Marge’, ’Simpson’, 39);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (7, ’Bart’, ’Simpson’, 11);

insert into "flintstone" ("id_flintstone", "surname", "family name", "age")

values (8, ’Lisa’, ’Simpson’, 9);

A simple ANSI SQL query to extract the data and sort it in surname is:

select surname, age

from flintstone

order by surname

SQL output is usually not returned in XML format, and certainly not in the format we’ve described in the
previous section. Here is the output that is generated by InterBase:

Database: flintstones.gdb

surname age

============================== =======

Barney 38

Bart 11

Betty 34

Fred 40

Homer 45

Lisa 9

Marge 39

Wilma 36

Before embarking on our tour to make this SQL more ConTEXt friendly, let’s first explore how to get such

60 From Database to Presentation via XML, XSLT and ConTEXt

output. Most relational databases offer a command line tool which can execute a given query. Frequently this
tool is called isql. To present the above example I called isql as follows:

opt/interbase/bin/isql flintstones.gdb -i select1.sql -o select1.out

The actual InterBase query, instead of the ANSI query presented above, looked like:

select "surname", "age"

from "flintstone"

order by "surname";

At the end of this section I present the command line tools of PostgreSQL and DB2.

There are two methods to typeset SQL output in ConTEXt:

1. Embed XML tags in the select statement.

2. Embed ConTEXt macro’s in the select statement.

The first approach will be discussed in this section, the latter approach in the next section.

Embedding XML in a select statement to generate the format discussed before can be done with this InterBase
select statement:

select

’<row><field>’,

"surname",

’</field><field>’,

"age",

’</field></row>’

from "flintstone"

order by

"surname";

The first two rows of the output look like this (slightly formatted for clarity):

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 61

Database: flintstones.gdb

surname age

====== ======= ======== ======== ======= ===== ======== ======

<row> <field> Barney </field> <field> 38 </field> </row>

<row> <field> Bart </field> <field> 11 </field> </row>

There are five problems with the output of InterBase isql, four of which are present in the above output:

1. There is no container tag, i.e. the <rows> tag is missing.

2. The first line contains the database used: flintstones.gdb.

3. Column headers are present.

4. InterBase inserts columns headers after every 20 lines. Because there are just a few flintstones, this does
not show up in my example, but I’ve typesetted thousands of entries, and there you have to deal with
it. Fortunately, this can be easily solved by using the −page parameter and calling isql as follows:

isql flintstones.gdb -i select1.sql -o select1.out -page 32000

This will insert a column headers only every 32000 rows.

5. There is a lot of superfluous white space. White space is usually not a problem with TEX, and it also
isn’t with ConTEXt’s XML typesetting macro’s. I consider this a feature. If white space is a problem,
you can attempt to write a somewhat different SQL statement like:

select

’<row><field>’ + surname + ’</field><field>’ + age + ’</field></row>’

from flintstones

This example uses string concatenation instead of putting the XML tags in different columns.

The first three problems cannot be solved by some parameter. We have to use Perl again. Here my script to
remove the column headers of an InterBase SQL output file and at the appropriate container tag:

#!/usr/bin/perl -w use strict;

test arguments

if (@ARGV == 0)

{

die "Supply a filename as argument";

62 From Database to Presentation via XML, XSLT and ConTEXt

}

open INPUT, "$ARGV[0]" or die "Can’t open input file $ARGV[0]: $!";

read up to the line with ====

while (<INPUT>) {

if (/^=.*/) {

last;

}

};

skip one more line

<INPUT>;

now just dump all input to output

print "<rows>\n";

while (<INPUT>) {

print;

}

print "</rows>\n";

The output is now a lot more like XML:

<rows>

<row><field> Barney </field><field> 38 </field></row>

<row><field> Bart </field><field> 11 </field></row>

<row><field> Betty </field><field> 34 </field></row>

<row><field> Fred </field><field> 40 </field></row>

<row><field> Homer </field><field> 45 </field></row>

<row><field> Lisa </field><field> 9 </field></row>

<row><field> Marge </field><field> 39 </field></row>

<row><field> Wilma </field><field> 36 </field></row>

</rows>

We can typeset this with:

\defineXMLpickup [rows]

{\starttabulate[|p(7cm)|p|] \HL\NC surname \NC age \NC\NR\HL}

{\stoptabulate}

\defineXMLpickup [row]

\NC \NR

\defineXMLpickup [field]

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 63

\relax \NC

\processXMLfilegrouped {select2.xml}

And the result looks great!

As promised here the commands to extract data from DB2 and PostgreSQL. For DB2 use the db2 command,
like this:

db2 -td\; -f myfile.sql -r myfile.out

The −td option defines the command separator character. I use the ‘;’ character for this. After the −f option
follows an SQL file with one or more select statements. With the −r option you can redirect the output to
a file.

PostgreSQL has the psql to extract SQL data. Use it like this:

psql -d flintstones -f myfile.sql -o myfile.out

The −d option specified the database name. The −f option specifies the file with the select statements.
The −o option redirects the output to a file.

5 Typesetting SQL without Generating XML

In the previous section SQL output was enhanced with XML tags. The XML tags were then mapped to
ConTEXt macro’s. It is possible to skip the XML tag generation by directly putting the ConTEXt commands
in the SQL select statement:

select

’\NC’,

64 From Database to Presentation via XML, XSLT and ConTEXt

"surname",

’\NC’,

"age",

’\NC\NR’

from "flintstone"

order by

"surname";

From the output we again have to remove the lines we don’t need. This can be done with more or less a Perl
script like the one shown before. It can be even simpler as it doesn’t have to add something before or after
the data. After cleaning up the output should look like:

\NC Barney \NC 38 \NC\NR

\NC Bart \NC 11 \NC\NR

\NC Betty \NC 34 \NC\NR

\NC Fred \NC 40 \NC\NR

\NC Homer \NC 45 \NC\NR

\NC Lisa \NC 9 \NC\NR

\NC Marge \NC 39 \NC\NR

\NC Wilma \NC 36 \NC\NR

The ConTEXt code to typeset the data in this case is:

\starttabulate[|p(7cm)|p|]

\HL

\NC surname \NC age \NC\NR

\HL

\input select3.tex

\stoptabulate

6 Transforming XML with XSLT

In the preceding section, we’ve seen how XML can be generated from non XML sources. This section is
concerned with generating XML that can be typeset in ConTEXt from existing XML sources. Usually XML
sources are not in a format that can be typeset easily. Such XML has to be transformed to the XML format
presented in earlier. Fortunately there is an entire language devoted to transforming XML to XML. It is
called XSLT, a quite complete and not too difficult language. More information about XSLT can be found at
http://www.w3c.org/Style/XSL.

The first example is making a list of euroTEX 2001 authors and their presentations. The program listing in
XML at time of this writing looked like this:

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 65

<?xml version="1.0" encoding="iso-8859-1"?>

<program>

<day weekday="Monday" date="24 September 2001">

<item time="9.00h"><opening/></item>

<item time="9.15h">

<presentation>

<author>Hans Hagen</author>

<title>Overview of presentations</title>

</presentation>

</item>

<item time="9.45h">

<presentation>

<author>Wlodzimierz Bzyl</author>

<title>Re-introduction of Type 3 fonts into the TeX world</title>

</presentation>

</item>

<break time="10.30h" type="coffee"/>

<item time="11.00u">

<presentation>

<author>Michael Guravage</author>

<title>Literate Programming: Not Just Another Pretty Face</title>

</presentation>

</item>

</day>

</program>

With the following XSL stylesheet we can transform this to our standard XML format:

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/program">

<rows><xsl:text>
</xsl:text>

<xsl:apply-templates select="day/item/presentation"/>

</rows><xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="presentation">

<row>

<field><xsl:value-of select="author"/></field>

<field><xsl:value-of select="title"/></field>

66 From Database to Presentation via XML, XSLT and ConTEXt

</row><xsl:text>
</xsl:text>

</xsl:template>

</xsl:stylesheet>

This transformation gives us something like this:

<?xml version="1.0" encoding="UTF-8"?>

<rows>

<row><field>Hans Hagen</field><field>Overview of presentations</field></row>

<row><field>Karel Skoupy</field><field>NTS implementation</field></row>

</rows>

How we can typeset this, should be clear enough by now! It is probably more helpful to explain the XSL
stylesheet a bit. An XSL stylesheet usually consists of many xsl:template tags. The XSL processor takes
the first one that matches the root node (the ‘/’ separator) as the main template. It starts the transformation
there (The real rules are somewhat more difficult, but not important here). In our case we match the
/program node. We output the rows tag and next we output all the presentations. This is done with a
xsl:apply-templates tag that searches for a template that matches the selected nodes. In the template that
matches the presentation node, we output the row tag and the individual fields.

An XSL processor can do many advanced things with XML, see Figure 4. It cannot only generate XML, but
also straight ConTEXt code for example, or just plain text.

Besides just selecting the presentation, we can also sort them. We can do that with embedding a sort
instruction in an xsl:apply-templates instruction:

<xsl:apply-templates select="day/item/presentation">

<xsl:sort select="author"/>

</xsl:apply-templates>

If you want to learn more about XSLT, I can recommend “XSLT Programmer’s Reference” by Michael Kay,
also the author of the well-known XSLT processor Saxon. For this document I used Xalan, another well-known
processor, see http://xml.apache.org/xalan-c/index.html.

7 Conclusion

My goal has been to give you a quite exhaustive overview of typesetting structured data, but not already
expressed as TEX macro’s, with ConTEXt. I did this by showing how you can typesetting XML in ConTEXt.
And I covered converting from comma separated files, relational database data and XML to an XML format
that can be handled easily by ConTEXt.

FREE SOFTWARE, Vol 1, Issue 02, Feb 2002 67

Figure 4: Figure 4. From XML to XML, text or what else

About the Author Berend De Boer studied information science at Delft, University of Technology. He
became involved with ConTEXt in 1995. Currently he is self employed and earns his money by designing,
developing and teaching teams about n-tier software. He can be reached by berend@pobox.com.

We at MNM Project is making our efforts to set up
the first free software training program in China. The
training content of the program will be free (the free
in freedom).

Our mission is to train plenty of free software devel-
opers for our community. We also believe everyone of
us should be able to program someday in this infor-
mation times. The computer programming courses
today are too hard for the most of us, but we think
they should be easy to understand, easy to operate
and apply — they should not be limited to those wiz-
ard people only.

The courses will be provided over TV, radio, Internet,
on-site and other possible ways. Students who pass
our exam will be issued the “Hackerdom Certificate”.

Now we are drafting the curriculum and syllabus for
the training program. At the basic level, some tra-
ditional courses have been included: discrete mathe-
matics, English for computing science, data structure
and algorithm, computer architecture, operating sys-
tem, compiler theory and practice. We welcome any
suggestion and/or recommendation from the commu-
nity for other courses to put in.

If you have experience working in the university com-
puter science departments, or if you created (or are
able to create) textbooks which are free for us to
adopt, or if you are experienced in created web-based
or TV coursewares, please kindly send your email to
hongfeng@gnu.org. For the qualified hackers and
teachers, if you are interested in this project and want
to join us, we may invite you come to China to work.

