C: My Approach

George Russell
george.russell@clara.net

Jan 18, 2002

In the 1st issue of the FREE SOFTWARE
magazine, was the article “Why C is here to
stay”. In its initial paragraph, the question is
raised : “s the C language, which is over 30 years
old, still relevant?” 1t then goes on to propose
that the answer is a resounding “Yes”.

I propose, that while the C programming lan-
guage is still relevant to Free Software, that this
is largely a historical accident, and that much, if
not most, free software projects could be better
served with a higher level language. While I do
not propose any one language as suitable for all, I
will provide references to various alternative lan-
guages which address various of C’s deficiencies.

Much Free Software is written using the C pro-
gramming language. This includes such notable
projects as the Linux kernel, the GNU Compiler
Collection, The XFree86 implementation of X11,
a multitude of server daemons and desktop pro-
grams. Perhaps even the majority of programs
written for GNU systems are written in C. The
C programming language was designed as a sys-
tems programming language, in which to imple-
ment the Unix operating system. As such, it
was targeted at expert programmers, implement-
ing an entire operating system. Efficiency was a
paramount consideration, and many low level fea-
tures were included to allow for interfacing easily
with hardware devices. Flexibility and simplicity

34

were important, but safety was considered of less
importance — the programmer was assumed to
know what he was doing.

C rose to success in tandem with the Unix oper-
ating system, one assisting the other. To write
programs on Unix, it was natural to write those
in C, the language supplied with Unix. To extend
Unix, again C was appropriate. To run Unix ap-
plications on other platforms, first you needed a
C implementation and then you could port the C
program. So when GNU in 1984 decided to clone
Unix to produce the GNU System, it was nat-
urally C that was chosen as the implementation
language. GCC has for many years been one of
the most portable and widely used C compilers
available.

Since C was introduced, many other program-
ming languages have been introduced. These have
looked at the weaknesses and strengths of C, and
learnt from them.

The weaknesses of C, in my opinion, make it large-
ly inappropriate as a language for developing new
software projects. The weaknesses of C are de-
tailed below. Of course, these are subjective, and
may well provoke some flamage from ardent fans.

Manual Memory Management I




FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

35

C requires that you manually allocate heap mem-
ory using the malloc, calloc, realloc functions, and
when you are done with that memory, that you
“free” it. In any non trivial program, tracking all
the memory allocations is tedious, error prone and
time consuming. This leads to programs which
over their lifetime acquire memory but never free
it, causing the memory usage of the program to
increase and denying use of the memory to other
processes.

Garbage collection is a well understood technique,
which removes the need to manually deallocate
memory. Data in memory is freed when no refer-
ences to it are kept. The technique has been used
for years in Lisp, the various functional program-
ming languages such as ML, Haskell, the pioneer-
ing object based language Smalltalk, and fairly
recently in Java. Bjarne Strustroup, creator of
C++, has indicated garbage collection will be an
optional part of the next C++ standard.

Bounds Checking, Strings as Arrays of Char-

acters

This is best summed up Commandment 5 in the
C programmers 10 commandments. “for sure-
ly where thou typest foo someone someday shall
type supercalifragilisticexpialidocious.”

In other languages, arrays are bounds checked at
runtime. This eliminates an entire class of com-
mon programming errors due to buffer overflows,
which are not only major causes of bugs but also
security holes in software such as network dae-
mons. C represents strings as arrays of character-
s with a NULL terminator. Operations involving
storing these place the responsibility on the pro-
grammer to check that there is enough space in
the buffer to hold the data.

Bjarne Stroustrup shows how the need to cor-

rectly handle C style strings greatly increases the
complexity of even simple programs, presenting
greater possibilities for error on the part of the
programmer. This can be seen in his paper,
Learning Standard C++ as a New Language.

A Broken Type System I

The type system of C is broken by design. Other
languages provide sophisticated checks at compile
time, or perform sanity checks at run time on the
types of variables.

C will let you treat any type as you will, allowing
you to omit function prototypes, the number and
types of arguments and the return type of func-
tions. These omissions result in more work for
the programmer who has to debug the problems
that result. While some feel providing type infor-
mation is too much of a hassle, languages such as
Python allow its omission, and OCaml will infer
the types of your data. Other languages detect at
compile time problems that only become eviden-
t at run time in C. There is no loss of power in
the use of type information, all that is required is
that the programmer make explicit his intentions
for how the data is to be treated.

Error Handling and a Lack of Exceptions I

C lacks support for exceptions to indicate when
an error has occurred. The programmer calling a
function, such as malloc, must explicitly check the
return value for error details. This damages read-
ability, since the purpose of the code is obscured
in error checking code. The alternative, too often
chosen, is to omit the error checking and ignore
failures.

Exceptions allow for grouping of error handling in
one place through the use of try ...catch blocks,



36

C: My Approach

which can allow all exceptions to be caught, and
handled where they occur or propagated back up
the handling chain to a suitable handler.

Lack of High Level Language Features ... I

Users of high level languages such as OCaml, Ja-
va, C++, Perl or Python often find C lacks use-
ful features which are built into the other lan-
guages. OCaml provides type inference, higher
order functions and built in garbage collection,
Java provides standardised networking, window-
ing and threading libraries, Perl has built in reg-
ular expressions and pattern matching for string
operations, Python has more sophisticated high
level dynamic data types built in such as dictio-
nary’s, lists, tuples and sets. C is a small language
— and as a result, functionality omitted in the
core language requires third party libraries. The
C standard library is much smaller that that of
other languages in terms of functionality.

So, while this shows why I do not feel C is an
appropriate language for Free Software develop-
ment, what do I feel is appropriate? More impor-
tantly, what do many other Free Software authors
use?

For those who like the syntax and structure of C,
C++ is the obvious successor. The GNU Com-
piler Collection includes G++, the GNU C++
compiler. This is a compiler which compares
favourably with commercial proprietary offerings
in portability and standards compliance. Much
free software is built using g++ . Some obvi-
ous examples of large C++ projects include the
K Desktop Environment, with its sophisticated
office suite, web browser, and integrated develop-
ment environment. The Mozilla web browser is
written in C+4. The Open Office Suite, formerly
Star Office, is also written in C++.

C++ is a superset of C, as standardised in 1989.
Any well written C89 program is also a C++ pro-
gram, and can be compiled with a C++ compiler.
“Thinking in C++ ! describes how C++ can be
used as “a better C”. The C++ compiler is picki-
er than a C compiler and can reveal hidden errors
in C programs, due to better type checking and
compile time analysis. Its also possible to easily
link in prewritten C libraries in C4++. The low
level features of C, such as the ability to mix as-
sembly code, are preserved in C++.

C++ provides a choice of programming style and
idiom. While C is procedural, C+-+ can be proce-
dural, Object Oriented or generic. The C++ STL
library provides powerful and efficient container
classes, such as vector, algorithms, such as sort,
and data types such as string. C++ can be used
to express programs more succinctly and with
greater clarity than C, by removing the need to
manage every detail of memory allocation, string
handling, and do this without sacrificing runtime
efficiency.

The programming language Java is similar to
C++ and C in terms of its syntax. Language
features which were dangerous, such as pointer-
s, have been removed. The GNU Compiler col-
lection provides support for java in GCJ, which
compiles to native code. Otherwise, Java can be
compiled to portable byte code, that can run un-
modified across several platforms, unlike natively
compiled applications. Java is also used in a num-
ber of free software projects. These include Net-
beans and Eclipse, flexible plug-in based integrat-
ed development environments supporting features
such as incremental compilation, graphical inter-
face design, code refactoring and auto completion,
syntax highlighting. The text to speech synthesis-
er FreeTTS, which provides an emacspeak com-
patible server is written in Java. The Limewire

I This is a nice book, but it is not free. — FSM



FREE SOFTWARE, Vol 1, Issue 02, Feb 2002

37

gnutella client is also written in Java. In general,
Java is suitable for any task requiring a portable
GUI application, involving networking, connect-
ing to databases and many other tasks supported
in the extensive standard class library.

Perl and Python programs can also be run wher-
ever interpreters are available. OCaml programs
can compile to native code or portable byte code.
Perl is a ubiquitous glue language, and Python is
a high level scripting language suitable for proto-
typing and used in the Zope server software.

The GNU system provides a plethora of program-
ming languages. While C has historically been the
choice of free software hackers, today there are a
large number of alternatives which can create e-
qually efficient and elegant programs in less lines
of code. Try a new language today.

Copyright (©2001 George R. Russell

Verbatim copying and distribution of this entire
article is permitted in any medium, provided this
copyright notice is preserved.

About the Author George Russell is a grad-
uate computer science student at Strathclyde U-
niversity in Scotland who uses GNU /Linux daily
at work and at home. He has used GNU/Linux
since 1997 and written applications on it us-
ing Java and C+4. He can be reached by
george.russell@clara.net.

References

The Ten Commandments for C Programmers
http://www.lysator.liu.se/c/ten-commandments.html

Thinking in C++,
Bruce Eckel
http://www.bruce-eckel.com

Learning C++ as a new language
Bjarne Stroustrup
http://www.research.att.com/~bs/papers.html

The Ocaml Web page
http://www.ocaml.org

The Python Web page
http://www.python.org

The Java Web page
http://java.sun.com

Mozilla
http://www.mozilla.org

KDE
http://www.kde.org

Open Office
http://www.openoffice.org

Netbeans
http://www.netbeans.org

Eclipse
http://www.eclipse.org

FreeTTS
http://freetts.sourceforge.net

Errata:

On page 79, 80, Issue 01, the download
URL of “How to Think Like a Comput-
er Scientist” was wrong, the right one is

http://www.ibiblio.org/obp/thinkCSjav/.

Notice:

Our planned article about ZMailman (How to
use GNU Mailman mailing list inside the Zope
web server) will be delayed to publish in a future
issue. —FSM




