Networking in PLT Scheme

Shriram Krishnamurthi

Dec 20, 2000

PLT Scheme has simple yet powerful primitives for estab-
lishing network connections. Learn more about them by
searching on“TCP/IP” in Help Desk.

We will build a few applications in this tutorial, starting
with something mind-numbingly simple, and growing to
something that begins to approach a useful application.
[NOTE: Tutorial hasn’t grown all the way out that far

yet.]

1 The Ping-Pong Duet

The first application is a client-server combination of stag-
gering simplicity. The client issues requests that consist of
the symbol ’ping. The server, upon receipt of this re-
quest, responds with the symbol ’pong. One time. The
client prints the server’s response. That’s all.

First, the two programs must agree on a common port
where the server will listen so the client can connect.

(define SERVICE-PORT 2000)
(define SERVER-HOST "localhost")

To test your programs, pick a “random” port number be-
tween 1025 and 65535. The bigger numbers are more bar-
ren, so you are less likely to interfere with another service
that already exists on your machine.

The client is easier to write. It simply uses TCP-CONNECT
to establish a connection to the server.

(define (client)
(let-values ([(server->me me->server)
(tcp-connect SERVER-HOST SER\
VICE-PORT)])

66

(write ’ping me->server)

(close-output-port me->server)

(let ([response (read server->me)])
(display response) (newline)
(close-input-port server->me))))

This defines CLIENT as a procedure of no arguments (so
the body doesn’t evaluate until we invoke the procedure).
TCP-CONNECT returns two values (look up “multiple return
values” in Help Desk). The first is an input port, to which
the server writes data, and the second an output port, from
which the server reads data. The naming convention used
above helps me keep them straight. The WRITE statement
writes ’ping to the port being read by the server. Having
written the message, the client closes its ports and exits.

In the above example, we assume both client and server
reside on the same machine (hence the use of the host-
name "localhost"). The client can reside on an entirely
different machine, however.

The server’s definition is slightly more complex. Here’s
the server:

(define (server)
(let ([listener (tcp-listen SERVICE-PORT)])
(let-values ([(client->me me->client)
(tcp-accept listener)])
(if (eq? (read client->me) ’ping)
(write ’pong me->client)
(write ’who-are-you? me->client))
(close-output-port me->client)
(close-input-port client->me))))

The server must first create a —verb—"listener”—. The
listener is woken up when a network connection comes in
on the chosen port. TCP-ACCEPT accepts responses queued
at the server.

If we combine these three code fragments (constants, client

Networking in PLT Scheme

and server) and run them in a single Scheme session, we
...can’t. There’s a problem.

If we run the client first, it tries to connect with the server,
which isn’t yet running, and we get an error saying there’s
no response from the common port.

If we run the server first, it creates a listener, then exe-
cutes the TCP-ACCEPT expression. This blocks on a request
before it can continue. But we need it to return control to
the prompt so we can start the client.

In short, we can’t run either one first.
There are three ways out of this jam.

First, we use two separate copies of Scheme (i.e., separate
processes). The first process runs the server. The second
one runs the client. Note that each process must have the
definition of its procedure and the constant definitions.
When run after starting the server, the client will return
the value pong.

Second, we can just run client and server on different ma-
chines. This is really just a special case of the first solution,
but it also lets you experiment with connecting to different
machines. To do this, you’d have to edit the value asso-
ciated with SERVER-HOST to be the name of the machine
running the server.

Third, we can use threads. (Read up about "threads" in
Help Desk.) We can thus invoke both the client and server
in the same Scheme process by running

> (load)

> (thread server)

> [back to the Scheme prompt; server runs\
in separate thread]

THREAD expects a procedure of no arguments as its first
argument, which is exactly what SERVER is.

> (client)
pong

In both cases, SERVER exits as soon as it has serviced its
request. If you invoke SERVER with THREAD you won’t
notice this. If you run the client and server in two separate
processes, you will.

67

That concludes our first example.

2 Queueing up for Tokens

The server and client in the first example ran only once.
Typical servers run forever, accepting and servicing re-
quests as they arrive. We’ll create such a server as our
second example.

We will once again build a client-server combination. The
server generates token numbers, much like the machines
that issue serial numbers to people in queues. The serv-
er initializes at zero, and each request generates the next
token number. The client is a function that consumes one
argument, which is the number of tokens to receive. It con-
tacts the server as many times as specified in its argument,
and returns a list of the resulting tokens.

If we were writing this program without networking, it
would look as follows:

(define serve-next-token
(let ([next-token -1])
;3 so first value return is 0O
(lambda ()
(set! next-token (+ next-token 1))
next-token)))

(define token-client
(lambda (how-many-tokens)
(if (<= how-many-tokens 0)
0O
(cons (serve-next-token)
(token-client (- how-many-tokens 1))))))

This program behaves as follows:

(0123 4)
’(5 6 7)

(token-client 5) ==>
(token-client 3) ==

Make sure you understand this code before proceeding.

First, establish the server’s locus:

(define SERVICE-PORT 2005)
(define SERVER-HOST "localhost")

68

The client is again pretty simple:

(define token-client
(lambda (how-many-tokens)
(if (<= how-many-tokens 0)
()
(let-values ([(server->me me->server)
(tcp-connect SERVER-HOST SERVICE-PORT)]1)
(let ([token (read server->me)])
(close-input-port server->me)
(close-output-port me->server)
(cons token
(token-client (- how-many-tokens 1))))))))

The server’s basic structure looks the same:

(define (server)
(let ([listener (tcp-listen SERVICE-PORT)])
D)

except it must do two things: (1) keep track of the last
token number, and loop to handle multiple requests. Thus:

(define server
(let ([next-token -1])
(lambda ()
(let ([listener (tcp-listen SERVICE-PORT)])
(let loop O
(let-values ([(client->me me->client)
(tcp-accept listener)])
(set! next-token (+ next—token 1))
(close-input-port client->me)
(write next-token me->client)
(close-output-port me->client))

(loop))))))

Note that the server does *not* need to create multiple lis-
teners. It creates the listener for that service just once. It
accepts connections from the listener multiple times. Now,
assuming the server is running (either in a separate pro-
cess, on a separate machine, or in its own thread), running
the client returns the expected values:

> (token-client 5)
(01234

> (token-client 3)
(5617

Free Software, Volume 1, Issue 01, Jan, 2002

Note the very subtle yet critical difference between the
server above and this one:

(define server
(let ([next-token -1])
(lambda ()
(let loop O
;; order of these
(let ([listener (tcp-listen SERVICE-PORT)])
;3 2 lines swapped
(let-values ([(client->me me->client)
(tcp-accept listener)])
(set! next-token (+ next-token 1))
(close-input-port client->me)
(write next-token me->client)
(close-output-port me->client))

(1oop))))))

The above server is *buggy*! Each time through the loop
it tries to create a new listener. The first time it succeeds;
on the second attempt, the invocation of TCP-LISTEN fails
because there is already a listener on that port — created
by this very server!

3 Variations on the Token Server:
Reusing a Connection and Ob-
taining Consecutive Numbers

There are potentially two problems with the token server
above. We address both these problems in this section.

First, the sample interactions with the token server be-
fore this section suggest that the tokens will always be
consecutive, as they are in the sequential world. In fact,
however, the server lives in a concurrent universe. Each
time through the loop, TOKEN-CLIENT establishes a *fresh*
connection with the server. Besides being somewhat inef-
ficient, this also means that a different client may connect
between two consecutive connections by your client, and
may thus grab one or more of the intermediate numbers.
So you might see an interaction like

> (token-client 5)
(01346)

Networking in PLT Scheme

(You probably won’t for small numbers of tokens, but if
you set off two processes each requesting a large number
of tokens — say 1,000 each — from the same server, you
ought to find that they aren’t all consecutive.)

A related problem is that the client connects to the server
each time through its loop. This wastes network resources
by repeatedly re-establishing connections. A better solu-
tion is for the client and server to have a ”dialog”: once
connected, the server keeps providing the client with to-
kens until the client has exhausted its demand.

In this rewrite, the client sends the server one of two
messages: ’more, as long as it needs more numbers, and
’enough, when it no longer needs any more numbers. The
server responds appropriately.

(define token-client
(lambda (how-many-tokens)
(let-values ([(server->me me->server)
(tcp-connect SERVER-HOST SERVICE-\
PORT) 1)
(let loop ([how-many-more how-many-tok\
ens])
(if (<= how-many-more 0)
(begin
(close-input-port server->me)
(write ’enough me->server)
(close-output-port me->server)
()
(begin
(write ’more me->server)
(newline me->server)
(flush-output me->server)
(cons (read server->me)
(loop (- how-many-more 1))\
2))))))

(define server
(let ([next-token -1])
(lambda ()
(let ([listener (tcp-listen SERVICE-PORT)])
(let server-loop ()
(let-values ([(client->me me->client)
(tcp-accept listener)])
(let per-client-loop ()
(let ([request (read client->m\
e)l)
(case request
[(enough)
(close-input-port client->m\

69

e)
(close-output-port me->client)
(server-loop)]
[(more)
(set! next-token (+ next-\
token 1))
(write next-token me->cli\
ent)
(newline me->client)
(flush-output me->client)
(per-client-1loop)1)))))))\
))

The NEWLINE and FLUSH-OUTPUT are necessary to make
the buffers to be flushed to the network device and trans-
mitted.

This program also guarantees that the tokens will be con-
secutive, because the server does not service a new client
until it is done responding to the current one.

Another way to make more effective use of a connection
and to ensure consecutive tokens is to have your server re-
turn several (consecutive) tokens at once. How to package
up the tokens? All our examples thusfar have transmitted
only symbols and numbers. In fact, however, as with I/O
operations on any other port, you may use any readable
and writeable datum [NOTE: insert Help Desk reference
here]. As a simple example, here’s a rewrite of the token
server and client where the client simply informs the server
of how many tokens it needs, and the server returns a list
of that many tokens.

(define token-client
(lambda (how-many-tokens)
(let-values ([(server->me me->server)
(tcp-connect SERVER-HOST SERVICE-\
PORT)1)
(write how-many-tokens me->server)

(newline me->server)

(flush-output me->server)

(let ([tokens (read server->me)])
(close-input-port server->me)
(close-output-port me->server)
tokens))))

(define server
(let ([next-token -1])
(lambda ()
(let ([listener (tcp-listen SERVICE-PORT)])

70

(let server-loop ()
(let-values ([(client->me me->client)
(tcp-accept listener)])
(write
(let count-loop ([how-many-more (read client\
->me)])
(if (<= how-many-more 0)
70
(begin
(set! next-token (+ next-token 1))
(cons next-token
(count-loop (- how-many-more 1))))))
me->client)
(close-output-port me->client)
(close—input—port client->me)
(server-loop)))))))

Notice that the first argument to WRITE is a loop that
computes a sequence of tokens.

Both servers in this section come at a price. One long re-
quest can tie this server down and make it unable to ser-
vice other requests. Eventually, the number of pending re-
quests may become too large and new client requests may
be denied. (See the second parameter to TCP-LISTEN.)

That concludes our short tour of a ping-pong server.

About the Author Shriram Krishnamurthi is Assis-
tant Professor of Computer Science at Brown University.
He researches the semantics, verification and implementa-
tion of advanced programming languages. He is particu-
larly interested in the problems of dynamically extensible
software systems. He is a co-author of the DrScheme
programming environment, the FASTLINK genetic link-
age analysis package, and the book How to Design Pro-
grams (MIT Press, 2001). He and his colleagues are now
writing How to Use Scheme. He is also the webmaster
of the famous web site hittp://www.schemers.org. He al-
so coordinates the TeachScheme! high school computer
science outreach program. He can be reached by email:
sk@cs.brown.edu

Free Software, Volume 1, Issue 01, Jan, 2002

[Microsoft to Clobber Linux] Byron Acohido, a jour-
nalist of USA TODAY reported at Seattle that “Mi-
crosoft is escalating its war against Linux, the free operat-
ing system begun as a hobby of Internet dabblers but in-
creasingly the darling of bankers, retailers and Hollywood
special effects wizards”.

According to Dec 26, 2001 memo leaked to technology We-
b site theregister.uk.com, Microsoft Senior Vice President
Brian Valentine urges his Windows sales force to “mod-
ify” traditional approaches and “dig deeper” to find out
where companies are using Linux. He assures his troops
they will soon get “independent” studies and spreadsheet
tools useful for obliterating “the perception that Linux is
free.”

Microsoft will probably try to show that Linux is costly
to maintain and service over the long term, experts say.
“We'’re working hard to debunk myths around Linux,” he
writes. “We’re approaching this in waves.”

Microsoft declines to comment on Valentine’s call to arms.
The software giant considers his rallying cry simply being
proactive in the marketplace, says a source familiar with
the matter. But the memo has been a hot topic in industry
circles, and some observers say it could ultimately backfire.

Unlike others Microsoft has vanquished, Linux is more a
grass-roots religion than a vulnerable corporate target.
While Microsoft jealously guards its core software code,
Linux code is open and continually improved by thousands
of top programmers around the world who believe software
should benefit society.

Some think Microsoft should likewise embrace Linux. But
Valentine’s memo suggests Microsoft is resorting to old
tactics at the risk of giving Linux a bigger forum to tout
its success stories, says Dan Kusnetzky, an analyst with
research firm IDC.

Digested from http://www.usatoday.com/money/tech/2002-
01-04-microsoft.htm —FSM

