Psycopg: A New DA between Python and PostgreSQL

Federico Di Gregorio

Dec 24, 2001

1 A little bit of history

Almost all projects have their roots in other, older
projects. Only very few are completely original and
psycopg makes no difference. It predates, if not code,
at least ideas and principles from its ancestors and it
would not be the solid program it is without them.
The fact that its ancestors were (and are) free soft-
ware made the whole process much easier, but we all
know that free is better, right? Lets go on.

It was more than two years ago. We were develop-
ing some big web sites using Zope (very few peo-
ple used Zope at that time) and Oracle’™. The
database adapter (DCOracle) had some problems
but was just great. Then we moved to PostgreSQL
and the database adapter (PygreSQL) was just ...er
...terrible. No support for the standard Python D-
BAPI, NULL values returned as empty strings, Zope
hanging on database operations. Terrible. At the
time, PygreSQL development seemed pretty stalled,
so we decided to write a new driver from scratch. And
no, it was not psycopg. It was PoPy.

PoPy was written mainly by Thierry Michel and Er-
ic Bianchi (two French students doing a stage at MIX-
AD LIVE), with some minor help from me (packag-
ing, some very little bug fixing) and Michele Comiti-
ni. PoPy supported the Python DBAPI-2.0 and had
some advantages over PygreSQL but was far from
perfect, having been written in a very short time. We
started to talk about a complete rewrite of PoPy and
how a well-designed database adapter should look
like. Before writing even a single line of code, Thierry
and Eric left and PoPy went with them. We contin-

ued to use it and sent some bug reports but we were
still talking about something with a better design.
Months passed until Michele decided it was time to
write the driver we talked about ...

The first version of psycopg was a tarball named
something like pgpyDBA.tgz sent to me by Michele
after a couple of unsleepy nights. The code did al-
most nothing at that time and the name was terrible
but I started playing with it with the idea of letting
Michele do almost all the work and just help him with
packaging and bug fixing. 15 days after i ported the
build system to the GNU autotools and imported the
package into our cvs. Another couple of weeks and I
found myself adding the connection cache code and
the type system. I was definitely sucked into psycopg
development ...

2 Techniqalities ...

...or the technical qualities we wanted in psycopg.
Even if the code started rough we had a clear men-
tal picture of how we wanted psycopg to work. We
wanted it to:

e support heavy multi-threading and release the
Python interpreter while connecting or exchang-
ing data with the DB;

e have an aggressive caching policy for the physical
database connections (opening a new connection
has quite an high overhead); and

72

e have a nice, non hard-coded way, of mapping
PostgreSQL types to Python ones.

Technical digression: Python (for some strange rea-
sons tied to cross-platform compatibility) maintain-
s a global lock to the interpreter and does not al-
low a thread to run unless its time has come or
the thread kindly releases the lock by calling the
Py_BEGIN_ALLOW_THREADS macro. From then on the
thread runs in parallel with the interpreter, until it
wants to call one of the Python internals, and has to
reacquire the lock by calling Py_END_ALLOW_THREADS.
If it does not re-acquire the lock, a segfault is the min-
imum you can expect (nothing if compared to data
corruption.)

After releasing 0.1 to the public (I don’t re-
member if somebody ever downloaded it) we be-
gun wrapping almost every network operation
in Py_*_ALLOW_THREADS macros introducing a big
speedup and lots of bugs (a clear example of the
porto-effect, see end of this article.) Anyway, multi-
threading was there.

At the same time we introduced connection caching
allowing cursors to re-use the connection previous-
ly open for another cursor and not closed at cursor
disposal. Implementing it was quite easy but to un-
derstand how it works we need to grab the differ-
ence of physical network connections to the database
from the connection objects create by calling the
connect () function in the psycopg module. The ba-
sic idea was to let a connection object manage more
than one network connection assigning them to the
newly created cursors as required. When a cursor
(created by invoking the .cursor() method on the
connection object) is disposed, the network connec-
tion is not closed, just cleaned up and stored in a
queue, ready for the next .cursor () call. This simple
trick gives a speed boost to applications that create
and destroy lots of cursors, like servers that spawn a
new thread for every incoming connection.

Around 0.3 we introduced the type system, built
on dictionaries of type-casting objects. The basic

Free Software, Volume 1, Issue 01, Jan, 2002

idea was to have a flexible system where the user
can add at runtime mappings from PostgreSQL
types to Python ones. (After all, PostgreSQL has
a rich set of types and even user-defined types!)
When the psycopg module is imported in Python,
it just setup a default set of type-casting objects
(for numbers, time stamps and intervals, dates,
strings and binary data) but the user can define
new ones or override the defaults. The fact that
PostgreSQL returns everything as a string make
really easy to write customized type-casting objects.
Here is an example of what the integer caster does:
def IntTypeCaster(data): return int(data)
(Except the fact that the predefined type-casting
objects are written in C, for increased speed.)

The 0.3 release was the first usable one, but the first
real downloads begun at 0.4. At that point we be-
gun to rewrite big chunks of code, both to fix bugs
reported by the users and to implement required func-
tionality. During the 0.5 cycle, for example, the en-
tire threading code was redone to comply with the
DBAPI-2.0 document, requiring cursors not to be
‘isolated’, i.e., any modification done to the database
via a cursor should immediately be visible to all other
cursors derived from the same connection. Confused?
We surely were ...

We wanted a completely stable one-dot-oh release, so,
after six months, we stopped adding new features and
started the 0.99 series. Michele rewrote three times
the binary data management code and we fixed the
last few bugs in a couple of weeks. We felt confident.
We released 1.0prel.

3 Time to code

1.0prel seems pretty stable, so it is time to aban-
don psycopg’s l.history and take a look at Python
DBAPI programming. The DBAPI-2.0 documen-
t defines a minimal set of functionality that all the
Python database adapter should provide. The D-
BAPI does not make porting an application from a

Psycopg: A New DA between Python and PostgreSQL

database to another automatic. Different databases
support different dialects of SQL and implement dif-
ferent extensions, after all. But it helps, because you
don’t need to re-learn everything from the start every
time you switch database. Assuming some SQL and
Python knowledge, extracting data from a database
is as easy as (lets suppose we have a database with
name, surname, telephone number and a PNG image
saved as binary data):

import psycopg

0 = psycopg.connect (’dbname=mydb user=fog’)
o.cursor()

c.execute (’SELECT * FROM addressbook WHERE\
name = %s’, [’Michele’])

data = c.fetchone()

print "Saving image of %s %s" % (datal[0], \
datal1])

open(datal[0]+".png", ’w’).write(data[3])

The first two lines simply create a connection to the
database and then a cursor to execute a query. The
third line executes a very simple query using a ‘bound
variable’, whose value is evaluated at execution time.
A nice plus is that bound variables are automatical-
ly quoted, e.g., psycopg will automatically quote the
string "r1’ye" into "ry"lie" before passing it to the
database backend. The fourth line just fetch a row
of data, used by the following two lines to print a
message and save the PNG image into a file. Easy.

But, how does psycopg decide if and how to quote?
Strings are rather easy; more complicated data types
will need a little help from you, like in the following
example that saves Michele’s photo into the database
(lets suppose we already have an opened cursor, c):

photo = open("Michele-new.png").read()

data = {’photo’ :psycopg.BINARY (photo) , ’nam\
e’:’Michele’}

c.execute("""UPDATE addressbook SET photo \
%(photo)s

WHERE name = %(name)s""", dat\

73

a)

The psycopg module (and all other DBAPI compli-
ant modules) have type singletons (BINARY, DATE,
TIME, ROWID, etc.) that can be used to convert
any kind of data from string to a representation bet-
ter suited for the database in use. This example also
show how to bind variables using a dictionary instead
of a list.

As a final example lets see how the connection pooling
of psycopg can help when designing a multi-threaded
server with database access. To make it easy, we
abstract the client-server protocol into a function
get_next_request () that returns the next pending
request to be served. A very minimalist server, with-
out any error checking would then be:

import threading, psycopg

setup a *single* connection for

all threads, make it not serialized

0 = psycopg.connect (’dbname=mydb user=fog’, \
serialize=0)

main loop
i =0 ; r = get_next_request()
while r:
t = threading.Thread(None, manage_req, ’\
Requst-’+str(i), o)
t.start ()
i +=1 ; r = get_next_request()

a function to manage requests

def manage_req(o):
¢ = o.cursor()
do something with the cursor ...
c.close()

Note how we created a single database connection and
how we pass it to the new threads. When a thread
finishes serving the request, it closes the cursor, but
the physical connection associated with that cursor is
not closed. It is put apart in a pool and reused when

74

the next thread calls .cursor(). This allows for a
great speed gain and if you don’t believe it, just try to
remove the serialize=0 argument to .connect(),
disabling the connection cache.

Enough code. As I said at the start of this section
psycopg 1.0prel seemed quite stable. Seemed. Let’s
return to our history ...

4 The -ility stuff

software is made of Stability. Awvailability. Us-
ability. We had the last two but, unfortunately, not
the first one. There is that strange effect: when you
put a zero as the first digit of the version of some soft-
ware, bug reports flow in at a steady rate. Then, you
decide to name a release 1.0something and, abruptly,
the bug reports increase in number and severity. Af-
ter the 1.0prel release, the mailing list started to fill
with messages from people experiencing grave bugs
and even trying to port psycopg to other archs! Now
I understand why some software skips the 1.0 stuff
entirely an moves directly to 1.x or even 2.0. It is to
avoid the dreaded one-dot-oh effect ...

Anyway, about two months later, with a lot of help
from psycopg users, we fixed the last (reported) bug
(a strange segfault due to a single line of code dating
back to 0.1) and released 1.0, the current release. A
patch release, fixing a little memory leak, will prob-
ably be released for Christmas and after then we are
planning documentation (both about psycopg itself
and DBAPI programming) and a new developmen-
t branch including features as asynchronous queries
and (absolutely the most requested) NOTIFYs.

In conclusion, I do not know if psycopg is really bet-
ter than PoPy or PygreSQL. Better how? Better for
what? It is too difficult to make comparisons. What
I can say is that psycopg was well-designed from the
start and gained a lot of supporters using it in real-
world cases. And this the most important thing.
Looking back I discover that I spent more time in

Free Software, Volume 1, Issue 01, Jan, 2002

‘user management’ (reading and writing to the ML,
investigating problems, helping newbies, etc.) than
in coding.

There is a big lesson here. Never, never, never post-
pone an answer to a bug report to ‘just code that
little feature I dreamed tonight’. Most of the bugs
where found after some users submitted a snipped of
code happily crashing psycopg. Some beautiful and
elegant code was written after an user said (publicly,
on the mailing list) that ‘there should be a better
way to do it.” Users are the base on which write
better code. Among them there are testers, contrib-
utors and maybe even the future maintainer of your
project. Even the better software, written by a demi-
god hacker is doomed if nobody uses it.

c.execute ("SELECT byebye FROM article_parts \
WHERE time = ¥%s", (’late’,))

Ah! Yes, the porto effect. To put it shortly, never
drink a bottle of porto wine with friends and then
go programming. You will surely introduce a bug so
terrible it will still bite you one year after. This term
was introduced by tersite after an apt-get upgrade
that completely destroyed its X11 installation on a
Debian box. His exact words were something like

“...the X11 maintainer should have drunk a lot
of porto yesterday night, just before uploading the
debs.” (Hi, Branden.)

About Author Federico Di Gregorio was born in
1971-10-19, in Pinerolo, ITALY, He met the Free
Software the first time on the mailing lists of ADE
(Amiga Development Environment), a project to
port the GNU software to the AmigaOS. Fisrt in-
stalled GNU/Linux on a laptop received as gradua-
tion (Physics) gift. Debian developer from the 1996
and founder of ASSOLI (FSF Europe affiliate assso-
ciation.) Partner of MIXAD LIVE (now closing) for
two years, now works as ‘free software consultant and
programmer’. He even managed to not starvate. He
can be reached by email: fogQinitd.org

