Making a Living with Free Software *

— Software Freedom: Rights, Duty, Metaphor, and Making a Living

Robert J. Chassell
GNU Project, Free Software Foundation

bob@gnu.org

There is more to making a living with free software than
running a business. You need an infrastructure of in-
stitutions to protect you and an understanding of the
metaphors that shape people’s thinking.

In this essay, I will first explain the nature of software
freedom: your rights and your duty.

Then T will talk about the ways people who are not
programmers come to understand software: the use of
metaphor. In the United States, for example, you often
hear the phrase ‘The Information Highway’ This is a
metaphor.

Businessmen and government officials often base their
judgements on metaphor.

Then I will describe the history of free software. The past
tells us what to watch for in the future, and how to bring

success out of failure.

I will then tell you what freedom brings:

* reliability,

* efficiency,

* security,

* choice of vendors,

* low barriers to entry,

* the legal and practical right to start and

operate a business.

Finally, I want to focus on the business models of free
software.

The successful business models recognize that revenue re-

*This speech was given by Robert Chassell when he visited China
in the August of 2000.

lated to software comes from providing one or other kind
of service.

1 What is free software?

1.1 What is software?

When I speak of software, I am speaking both about the
programs that run the computer, that is to say, the operat-
ing system, and about applications, such as electronic mail
and other communications, spreadsheets, electronic com-
merce, writing tools, sending and receiving FAXes, Web
site creation, engineering, research, mathematical compu-
tations, modeling, image manipulation, and networking.

And T am talking about applications that are embedded
in a machine, applications that control a fuel injector, or
operate a telephone, or control a washing machine.

1.2 What is free software?

Free software is software that you may copy, study, mod-
ify, and redistribute. These are freedoms. They are not
intrinsic to the technology: there exists software that y-
ou are forbidden to copy, forbidden to study, forbidden to
modify, and forbidden to redistribute.

If you have software and you are forbidden to use it, and
if that ban is enforced, the software does you no good.

It is fairly straightforward to copy and distribute software
that is hard to study and modify. This is often done with
Microsoft products, even though such actions are banned.



20

You gain little from software that is hard to study and
hard modify since you cannot learn from it and cannot
improve it. Indeed, such software makes you a dependent
who cannot learn or advance. In the short run, you benefit
because you can run a computer; that is why people use
such software. But in the long run, you are hurt because
you are held back.

For success, you need to study and modify software (or
hire people who do this), as well as copy and redistribute
it; the only way to ensure such success is a proper legal
and institutional framework that protects your rights.

In addition, free software under the GNU General Pub-
lic License (the GNU GPL) imposes on you an obligation
to the community. This duty is enforceable by law as well
as being an obligation that others expect you to follow. Y-
our duty requires you to redistribute fixes and extensions
that you make to work that others have done before you.

This is not a technical or business issue:

what makes software free rather than imprisoned is the
legal and institutional framework in which people work.

There are two reasons to prefer free software over
restricted-distribution software.

The first and most important reason is that a free society
is better than the alternative. Your freedom to create and
use software is a part of living in a better society. You have
the legal right to choose a business, to choose a vendor, to
choose software, to share with others, and to collaborate.

A second reason is that free software, over time, tends to
become more reliable, efficient, and secure. These reasons
motivate those who otherwise do not care whether you
have any rights.

Machines should not crash unnecessarily, email messages
should not waste their recipients’ money, computer sys-
tems should not be vulnerable to simple viruses, computer
programs should do what users want.

As a practical matter, the key to the good use of software
is to ensure freedom. In software, this leads to reliability,
efficiency, and security, to lower prices, to collaboration,
and fewer barriers to entry and use.

Free Software, Volume 1, Issue 01, Jan, 2002

2 Legal framework, ancient differ-
ences

The key, as I said, is freedom, the legal right to copy,
study, modify, and redistribute software. Rights generate
freedom.

It is important to ensure all these rights. While you and
other people will benefit a little if you have two or three of
these rights, rather than none of them, you and everyone
else should have all four rights. Without them, you lose
the social and technical benefits.

For example, in the United States in the 1980s, I wanted
to use a typesetting computer program call TEX. How-
ever, that program was in a legal state called the ‘public
domain’.

People often think of the ‘public domain’ as best of all. In
this case, it meant that anyone could use the software.

However, the legal status of ‘public domain’ also meant
that companies could make additions to the software that
they kept from the public.

It meant that I could not typeset and print a book that
a friend had created on his computer, since the company
that extended the original program to work on his com-
puter did not cooperate with the company that extended
the program to work on my computer. So even though the
initial program was available to the public, it lived without
proper protection; and was thereby made useless.

Fortunately, others have taken that original program, and
added to it in well protected ways, and I can now use it
again.

You need a legal and institutional framework to protect
and preserve your rights. If you cannot protect your free-
dom, people will take it from you.

Since you must deal with people who are strangers, people
with whom you have no connections, you must, if neces-
sary, be able to resort to law. Most people are honest and
moral, but not everyone.

Without law, there are no practical sanctions. And the
agents of the law must be reliable, quick, and honest. If
the police or the courts are unjust, slow, or corrupt, peo-
ple, businesses, and governmental organizations will avoid



Making a Living with Free Software

them.

I have a question about ancient history. 2,000 years ago in
the Han Dynasty, there were few lawyers in China. It was
not an honored and independent profession. But there
were lawyers at that time in the Roman Empire. Busi-
nesses hired lawyers to work for them to settle disputes in
courts provided by the government. And people in Europe
began to think that that was the way disputes ought to be
settled.

My understanding is that the Han Dynasty also had judges
and courts, and these worked well for the maintenance of
Han civilization. But there were no lawyers for businesses
to hire; and many businesses were unregistered. So busi-
nesses did not make use of the government’s courts. They
settled disputes in other ways. And people in China began
to think that that was the way things ought to be.

Of course, there have been many changes in the last 2,000
years. The Han Dynasty is long gone, as is the Roman
Empire.

But does anyone in China perceive the use of law and
of licences as a strange and perhaps foreign method of
settling disputes?

I ask this because free software depends on the reuse of
laws that were originally designed for other purposes. The
GNU General Public License, for example, which I will talk
about in more detail in a moment, is a copyright license.
It depends on the law of copyright. And it depends on the
proper use of honest courts and police.

If the ancient Roman Empire had had computers and copy-
right law, the GNU General Public License could have
been used 2,000 years ago, to protect free software.

But I do not know how free software would have been

protected during the Han Dynasty, especially if members
of the government did not all favor freedom.

3 GPL, rights, duty, in detail

In the GNU Project, we created a legal tool to protect and
preserve free software.

The legal tool is a specially drafted copyright license, the
GNU General Public License.

21

In essence, this license forbids you to forbid. It also forbids
others from preventing you from acting.

In addition, the GPL imposes on you an obligation. This
duty is enforceable by law as well as being an obligation
that others expect you to follow. Your duty requires you
to redistribute source code that you create as an extension
to work that others have done.

Before talking about your duties, let me first go through
the list of rights that comes with free software: your rights
to copy, study, modify, and redistribute the software.

The GNU General Public License gives you more rights
than the usual copyright license. For this reason, the GPL
is sometimes called a ‘copyleft’. This neologism depends
on the multiple meanings of the word ‘right’.

Do the words ‘right’ and ‘left’ in Chinese, ‘you’ and ‘zuo’
in Pinyin, convey the same joke or pun as the words in
English?

The four rights are to copy, study, modify, and
redistribute.

First, the right to copy. Not many people own or man-
age a factory that would enable them to copy a car. In-
deed, to copy a car is so difficult that we use a different
word, we speak of ‘manufacturing’ a car. And there are
not many car manufacturers in the world.

But everyone with access to a computer owns or manages a
software factory, a device for manufacturing software, that
is to say, for making new copies. Because copying software
is so easy, we don’t use the word ‘manufacturing’; we usu-
ally do not even think of it as a kind of manufacturing,
but it is.

The right to copy software is the right to use your property,
your own means of production.

Second, the right to study. This right is of little direct
interest to people who are not programmers. It is like the
right of a doctor to study medicine or lawyer to read legal
text books. Unless you are in the profession, you probably
wish to avoid such study.

However, this right to study has several implications, both
for those who program and for everyone else.

The right to study means that people in places like Mexico,



22

or Germany, or China, can study the same code as people
in Japan or the United States. It means that these people
are not prevented from learning how others succeeded.

Bear in mind that many programmers work under restric-
tions that forbid them from seeing others’ code. All they
see are the toy programs of school text books, no real pro-
grams.

Many years ago, a wise man said that the best way to see
ahead and to advance is to sit on the shoulders of a giant.

But programmers who are unable to see others’ code do
not sit on the shoulders of anyone; they are thrown into
the mud. The right to study is the right to look ahead,
the right to advance.

Moreover, the right to study means that the software itself
must be made available in a manner that humans can read.

Software comes in two forms, one readable only by com-
puters and the other readable only by people. The form
that a computer can read is what the computer runs. This
form is called a binary or executable. The form that a hu-
man can read is called source code. It is what a human
programmer creates, and is translated by another comput-
er program into the binary or executable form.

(Actually, a programmer can read a binary, but with great
difficulty; it is seldom worth the effort. Source code is the
best practical form for humans.)

The next right, the right to modify, is the right to
fix a problem or enhance a program. For most people,
this means your right or your organization’s right to hire
someone to do the job for you, in much the same way
you hire an auto mechanic to fix a car or truck or hire a
carpenter to work in your home.

Modification is helpful. Application developers cannot
think of all the ways others will use their software. Devel-
opers cannot foresee the new burdens that will be put on
their code. They cannot anticipate all the local conditions,
whether someone in China will use a program first written
in Finland.

Finally, of these legal rights, comes the right to re-
distribute. This means that you, who own a computer,
a software factory, have the right to make copies of a pro-
gram and redistribute it. You can charge for these copies,
or give them away. Others may do the same.

Free Software, Volume 1, Issue 01, Jan, 2002

Remember, that redistributed code must include source
code. Redistributed binary code lets you run a computer,
but prevents you from doing anything else. It traps you
in dependence.

When you create and distribute new code that fixes or
extends older code, then you gain a duty, which is to dis-
tribute the sources for your new code, under the same
license as the older code. This means that people who use
your new version of the older code retain the same right-
s and freedoms that they had when they used the older
code.

It means that if you fix my code, I have the right to use
your fix.

I mentioned earlier the typesetting computer program call
TgEX. This program was in the ‘public domain’, meaning
it was not covered by a license. No license, no obligation:
I described the problem this caused: I could not typeset a
book.

However most programs do have licenses. But some li-
censes do not impose this obligation to redistribute fixes
or extensions.

These other licenses, such as the famous BSD license, per-
mit a person or company to take software that is itself
free, and fix a bug or make an improvement, and then re-
strict who can use that fix or improvement. The United
States government created the original BSD license. In
effect, it became a way to subsidize partially monopolistic
companies, since each received code that was paid for by
the United States tax payer.

The original Netscape Public License was like this as well.
You could look at their original source code, but if you
contributed modifications or improvements, America On
Line, the company that purchased Netscape, had the legal
right to take your work and prevent you from using any
fixes to it or improvements to it that they made. They
could legally prevent you from using software with your
own code in it!

While a good many people went along with this license,
and they call it ‘free software’, many others refused to
cooperate with Netscape. I myself think that this is one
reason the new Netscape browser, the Mozilla project, is
so delayed: Netscape lost the cooperation of the people
they needed at the beginning, the people who are the best
in the world, who refused to help them.



Making a Living with Free Software

Now the new Netscape Web browser project, the Mozilla
project, is finally coming to fruition, and the browser work
well, but imagine if it had appeared a year or more ago!

I mention all this because it turns out that the obligation
is as important as the rights. For success, a company must
to contribute to the community as well as take from it.

And only through the law can we ensure that everyone
acts upon their duty.

4 Competitive, free market collab-
oration

The right to redistribute, so long as it is defended and
upheld, means that software is sold in a competitive, free
market. This has several consequences. Low price is a
consequence. This helps consumers.

But first and foremost, these legal and economic rights
lead to collaboration and sharing.

This outcome is contrary to many people’s expectations.
Few expect that in a competitive, free market, every pro-
ducer will become more collaborative and more sharing.
Few realize that there will be no visible or felt competi-
tion among competing businessmen.

I will spend a few moments explaining this because it is
important.

The more competitive a market, the more cooperation you
see. This apparently counter-intuitive implication is both
observed and inferred.

Sharing occurs when people are not harmed by doing what
they want to do. People like to help their neighbors.

Consider a small farmer, one among a million. My friend
George, back in the United States, is one such.

His harvest is so small, that there is nothing he can do to
effect the world price. His neighbor is in a similar situa-
tion.

Consequently, if George helps his neighbor, his neighbor
benefits, and George himself loses nothing on the price he
receives for his harvest.

23

Since George will not hurt himself, he has every other rea-
son to help his neighbor. Not only is George kindly, he also
recognizes that when he helps his neighbor, his neighbor
is likely to return the favor.

This is what you see in a competitive free market: coop-
eration.

Visible competition indicates that the market is not fully
free and competitive. Visible competition means that at
most you have a semi-free market.

5 Lower, legal prices

Moreover, and this benefits people who are not program-
mers, if software is sold in a free market, competition a-
mong vendors will lead to a lower price. Put another way,
the price of software is determined primarily by legal con-
siderations: by the degree to which customers enjoy free-
dom.

If customers are forbidden to buy a product except at a
high price, and that prohibition is successfully enforced,
the product will be expensive. This is what occurs with
much proprietary software today.

On the other hand, if software is sold in a free market,
competition among vendors will lead to a lower price. This
means that software itself, a necessary supporting part of
a business or community project, will be both inexpensive
and legal.

Think of this from the point of view of a business or
community supported group. The organization can use
restricted-distribution, proprietary software, and either
pay a lot of money it does not have, or break the law
and steal it.

I should mention that if a country is a failure, and expected
to continue as a failure, no one is going to try to stop
illegal distribution. I know a fellow in Africa who says
that Cameroon is like this. China is different. It was
once considered a failure, but now various US companies
are thinking it is a success. Hence, they are pressing the
US government to persuade the Chinese government to
adopt laws against illegal distribution. At some point, the
Chinese government will have to enforce these laws to the
satisfaction of companies like Microsoft, or else face trade
sanctions.



24

On the other hand, free software is inexpensive and legal.
It is more accessible. It is also customizable in ways that
restricted software often is not. This is empowering.

As I said earlier, we shape the development of this tech-
nology, we create collaboration, through the use of a legal
tool, a license, that gives you more rights than you would
have otherwise, that forbids you to forbid, that in this case,
gives you the right to copy, study, modify, and redistribute
the software.

Because of the freedoms associated with it, this software
is called ‘free software.’

While I am speaking of this phrase, let me clear up a verbal
issue that sometimes confuses English speakers.

6 Meanings of word ‘free’

The low price of free software leads some English speakers
to think that the word ‘free’ in the phrase ‘free software’
means they can obtain it without cost. This is not the
definition, which is about freedom, but it is an easy mis-
understanding. After all, I have been talking of frugal use
of resources, software that is inexpensive.

The English word ‘free’ has several meanings. As a Mex-
ican friend of mine — and leader, by the way, of a major
free software project — once said to me,

English is broken; it does not distinguish between ‘free
beer’ and ‘free speech’.
Spanish, on the other hand, distinguishes between ‘gratis’
and ‘ibre’. When you speak of ‘free beer’, you mean beer
that is gratis; but when you speak of ‘free speech’ you
mean freedom.

Free software is ‘libre’ software.

Incidentally, Eric Raymond and Bruce Perens invented the
phrase ‘open source’ a few years ago as a synonym ‘free
software’. They wanted to work around the dislike many
companies have of free markets. The phrase is popular;
Eric and Bruce succeeded in their purpose.

However, I prefer the term ‘free software’ since it better
conveys the goal of freedom; the proposition that every
man and woman has the right to do first rate work, and

Free Software, Volume 1, Issue 01, Jan, 2002

must not be forbidden from doing so.

7 Metaphors explain the new in
terms of the old

What is this technology to which people have rights, or
should have rights? Let me explore this question in more
detail by discussing how people think of one aspect of com-
puters and software, which is the Internet.

In discussing technology, we can use metaphors to link
older and more familiar technologies with a newer and less
familiar technology.

In the United States, the most common metaphor for ex-
plaining the Internet is the phrase ‘Information Highway’.
I don’t know if this metaphor is so common in other parts
of the world. If it is not common, it is still worth learn-
ing, because you will have to deal with Americans whose
thoughts grow out of this metaphor, and are sometimes
wrong.

The metaphor of the ‘Information Highway’ takes people’s
knowledge of highways and invites them to apply that
knowledge to a new and for most people unknown arti-
fact, the Internet.

In the Tang Dynasty, 1,500 years ago, I would have used
the metaphor of the ‘Information Canal’ since the Grand
Canal had just been extended, and many smaller canals
built.

What does this metaphor tell people? First, it tells people
that the Internet is outside your home or office. It is not
inside.

Partly, this is a useful analog, since you do need to gain
access to the Internet, through a telephone, cable, or other
communications device. Similarly, if you own a house, you
need to build a driveway from your house to the road. But
the metaphor does not help you if you live in an apartment
building right next to a public highway (or right next to a
canal).

Moreover, the metaphor does not tell you that you can
bring remote computers into your home or office. It did
not warn me that that when I was in Germany, I could
get confused with whether I was using a machine across



Making a Living with Free Software

the Atlantic in the United States, or one a few hundred
kilometers away in another part of Europe.

Nor does the metaphor tell you that you can create a se-
cure local network that stretches across nations and ocean-
s. This ability is important for businesses trying to grow
and for the civil society.

Also, while the metaphor correctly tells you that Inter-
net connections may be slow intrinsically, like a secondary
road, or suffer traffic jams during rush hour, it misleading-
ly suggests that the system takes up a great deal of ‘space’
that could be used for other things, such as parks within
a city.

It suggests that the space in which information resides is
limited in the same way as space within the confines of a
city. The ‘Internet as Highway’ metaphor does not lead
people to think of the space required by information in
the same way as the Dutch think of The Netherlands, as
a land that is built.

The metaphor hides useful features.

A second metaphor is the ‘Electronic Shopping Mall’. This
tells you that the purpose of the Internet is to provide
a place to buy things, and it also tells you that private
investors will pay to build it.

The metaphor suggests that the market will need govern-
mental regulation and freedom, since you cannot run ef-
ficient or large markets without both regulation and free-
dom. The metaphor also suggests also that there will be
great opportunities for theft, corrupted regulators, sweat-
heart deals, and cozy arrangements.

A third metaphor is that the Internet is a ‘Great Library’.
You can search and find information. Indeed, I find that
people are often more likely to use the Internet as a refer-
ence library than they are a real library!

The ‘Internet as Library’ metaphor tells us that many peo-
ple can re-see the same information, just as many patrons
can borrow the same book. This is important for those of
you who concern yourself with budgets.

Moreover, the metaphor tells you to expect a vast range of
queries; that while most inquiries will focus on the same
small list of topics, others, a huge number of them, will
focus on subjects you never considered. This has critical
business and political ramifications.

25

Most importantly, aside from the pleasure a library gives,
a great library enables people to learn from, and possibly
avoid, the mistakes of others. Lessons learned: you do not
have to repeat others failures; you can perhaps succeed!

Embedded software is software that goes into a washing
machine or airplane or truck. It is not visible the way the
Internet is visible. And while I am focusing mostly on the
Internet, let’s shift our attention for a moment.

People often use a metaphor to understand embedded soft-
ware. Most often, the metaphor is of a little man, sitting in
the washing machine or automobile engine, pulling levers.

The metaphor is valuable in that it tells you that the ma-
chine can respond to new conditions in ways it could not
respond before. The metaphor is dangerous in that it can
lead you to believe that the machine can do as much as a
human, when it cannot.

These metaphors, limited and troublesome as they are, tell
us about the tools that use the software.

To return again to the metaphor of the ‘Information High-
way’: this metaphor tells us about roads with potholes
and weak bridges. We want our electronic networks to be
reliable. Highways attract highwaymen, thieves. We wan-
t our electronic communications to be secure. Highways
cost money. We want our electronic communications to be
efficient and use resources well.

As a practical matter, free software brings you each of
these features: reliability, security, and efficiency.

The metaphor of the ‘Electronic Shopping Mall’ tells us
about burglary. After all, merchants get robbed.

The metaphor also tells us about the importance of trust
in commercial transactions, that our money must be good.
It tells us about issues of privacy, and the opportunities
for monopoly.

Freedom brings security, it brings trusted ways of dealing
with one another, it brings the possibility of privacy, and
it brings the makings of a competitive free market.

The metaphor of the ‘Library’ tells us to expect a small
set of ‘most visited’ sites, and a large set of seldom visited
sites. It tells us that people will want to learn about the
oddest lessons. People want the empowerment that comes
from knowing. The metaphor also tells us that private



26

funding may be too limited to generate the full range of
social and economic benefits that libraries can bring.

In essence, these metaphors lead us to the lessons that are
learned from other technologies. The metaphors tell us
what we want.

Freedom in software, the right to copy, study, modify, and
redistribute, brings you the results. They flow from tech-
nology, as shaped by the appropriate free license.

8 History

Next, I want to talk briefly about the history of free soft-
ware. How did we get here?

This is not ancient history; it is recent. It is important, be-
cause it explains how we came to invent the GNU General
Public License, how freedom meant success rather than
failure, and how ‘Linux’ appeared.

Originally, all software was free. That is to say, program-
mers had the legal right to copy, study, modify, and redis-
tribute it. Indeed, in the beginning, you could not copy-
right a computer program and you could not patent any
of its mathematics. Trade secrecy was not onerous.

Beginning in the 1970s and early 1980s, it became legal
in the United States for companies to copyright comput-
er programs, and legal for them to patent mathematical
procedures. Software vendors stopped supplying source
code.

In the early and mid 1980s, these hindrances inspired
Richard Stallman and others (including me) to start GNU,
a project to create an open source, freely redistributable
operating system and associated applications.

We were able to do this because we had the legal right to
invent a license, the GPL. Under the law, if you use our
work, or if you fix or extend our work, you have to abide
by the license conditions we set. The conditions we set are
specified in the GNU General Public License, which gives
you the rights to copy, study, modify, and redistribute the
software, and the obligation to redistribute your changes
under the same license (if you distribute the changes at
all; if you keep your changes to yourself, you do not have
to redistribute sources).

Free Software, Volume 1, Issue 01, Jan, 2002

Of course, if you do not like the terms of our license, you
do not have to use our software.

In the early 1990s, the main parts of the GNU Project were
complete. We had written most of the necessary software.

However, work on a a key piece was delayed. FSF was de-
veloping a highly advanced operating system kernel. This
is the software that schedules operations for the central
process unit and does other important jobs.

Had this been a restricted-distribution project, the whole
project would have failed, as so many have done, even
though more than 7/8ths was completed, tested, and in
use in other systems.

But this was a free software project, and Linus Torvalds,
a young Finn, was able, legally and practically, to write
his own, less advanced kernel. Linus called this kernel
Linux, and adopted the GNU programs that were already
written, the GNU environment. He also adopted the GNU
General Public License, which made his contribution freely
redistributable.

The combination of the GNU environment and the Linux
kernel led to a usable operating system and set of applica-
tions called GNU/Linux, a name that is often shortened
simply to Linux.

In the past couple of years, GNU/Linux has become widely
known.

9 What freedom brings ...in

terms of software

Why is this technology successful? It is because of the
benefits brought by freedom.

What does freedom bring?

I do not have much experience with systems that crash,
excepting when hardware fails, or I am testing experimen-
tal software, or when my sister’s husband is working on
the electricity upstairs and turns off all the electricity.

Programs are complex entitities. They have thousands or
millions of components. Because the components them-
selves are mathematical objects, that is to say, numbers



Making a Living with Free Software

and symbols, the components will not and cannot break,
any more than the number 3 can break. But the com-
ponents can be combined wrongly, or you can insert the
wrong components, or leave them out. Such bugs cause
havoc.

An advantage of free software is that lots of people — three,
four, ten, sometimes more, sometimes hundreds — look at
a piece of code. And as the somewhat awkward saying
goes

Many eyes make all bugs shallow.

That is to say, one of the many people looking at the code
will notice the problem. And it will get fixed. Everyone
wants and is rewarded for good, working code. The user
does not want trouble; the programmer does not want a
shameful reputation. He wants a good reputation.

In contrast, a proprietary company that sells updates will
have a financial incentive to leave at least some bugs in
its code. This is so its customers will have an incentive to
buy the upgrade.

I find it odd that anyone would purchase overpriced, buggy
code, but they do. They either do not know about alter-
natives or they see what they are doing as less difficult
than switching.

A notable feature of free software is that many applications
run well on older, less capable machines. For example, a
couple of months ago I ran a window manager, graphical
Web browser, and an image manipulation program on my
sister’s old 486 machine. These worked fine.

Text editors, electronic mail, and spreadsheets require
even fewer resources.

This frugality means that people can use older equipment.

At the same time, manufacturers are building modern,
low-end computers that do as much as the older ones, and
are not too expensive.

There is no need to acquire expensive hardware to run
your software.

Moreover, free software brings with it frugal standards.
You don’t have to waste your correspondents’ budgets by
sending them overly bloated email.

27

A while back T received an email message that took up
more than four and a half times the resources needed to
convey the information.

Next time you budget for a project, consider paying four
and a half times its cost. Then consider whether you would
fund it.

Next time you pay at a restaurant, take out four and a
half times the money ...

For me the resource use was not an issue because I do
not pay by the minute for telecommunications, as many
do. But I know that my correspondents around the world
prefer that I take care in my communications that I do not
waste their money or that of their supporting institutions.

Your work should be secure. Your computer should avoid
what you do not want.

Just recently, for example, a large number of people who
used proprietary software from Microsoft were hurt by a
virus called the ‘I Love You’ virus or ‘Love Bug’. The
vendor had created a system that is foolishly vulnerable.

You can, of course, make free software equally vulnerable,
just as you can open the door to any house or business
and invite thieves in. But none of the free software dis-
tributions that I know are so vulnerable. This is because
people want to avoid harm and are able to insist that their
vendors protect them.

You should have confidence in your privacy.

Of course, the free software producers don’t always suc-
ceed, but on the whole, they have done well.

10 What freedom brings ... to cus-
tomers and businesses

Freedom means that you, as a customer, have a choice
among those who would provide you with software and
associated services. You are not in a ‘take it or leave it’
situation. You can choose among your vendors.

Perhaps paradoxically, this choice is good for vendors also.
Yes, it is easier for a customer to leave.



28

But this also means that customers are not frightened of
working with a small business that they like, but figure
may vanish in five or ten years; they can move without
trouble. But I have also heard the opposite: the customer
who decides to avoid a business because moving from it
would be expensive, and the customer fears that the busi-
ness will vanish in ten years.

Also, if customers can readily leave, employees know that
they come to the business because the customers like the
solutions the business sells. Employees like this, because
it tells them they are doing a good job. Owners sometimes
like this, too, since they too want to know they are living
morally.

Freedom means that you, as a businessman, have the legal
right to start a business. You are not hindered by overly
expensive licenses. You are not forbidden.

Likewise, as a customer, you may use the code.

Freedom means that businesses are rewarded, with sales
and profits, for satisfying customers legally, rather than
rewarded by overcharging and hurting customers, which is
illegal, at least in the US.

A quick digression here: restricted software often means y-
ou are forbidden to start a business. Miguel de Icaza, who
started a major international project in Mexico, could nev-
er has started with restricted software. He was forbidden
to use it.

Since free software is sold in a competitive market, its price
is low. This means no one sells software as such. Instead,
they sell services or they sell hardware as, for example,
IBM does.

Success depends on satisfying your customers. This makes
both your employees and your customers more happy.

The alternative is policing, which is to say, making sure
that sotware is not used or copied illegally. Generally s-
peaking, the word ‘policing’ is not used. Instead you hear
of ‘License Compliance’ or other such phrase. A while
back, the company that supplies me with electricity hired
a ‘License Compliance Manager’ to make sure that engi-
neers did not take their work home, since their work was
associated with software that was not supposed to go out
of the building. Policing is expensive and unpleasant.

First and formost, software freedom create a world in

Free Software, Volume 1, Issue 01, Jan, 2002

which software does what you want.

If you don’t find an application that does what you want,
you may write your own code, or hire someone to do so.

You have the legal right, and with the source code, the
practical right, to adapt other code to what you want —
this is often more efficient than writing from scratch.

Or, if you don’t want to spend the money and resources,
you can look around; often, you will find that someone else
has faced nearly the same problem as you, and you can use
that person’s work.

11 What freedom
... limitations

brings

But freedom does not bring everthing on its own. Some-
times you cannot find a program that does what you want.

In particular, we need fully developed double entry book-
ing software, for accounting.

When I first talked about accounting, free software for it
did not exist. Now the software exists — I know of two
packages — but they need more work.

Free software can be used any where in the world but we
often do not see it used where it could be.

There are successes: inexpensive email in East Timor, a
hospital using a free medical information management in
Guatamala.

But often, you see people using tools that they are for-
bidden to study, learn from, modify, or customize. These
packages, as I said earlier, solve one problem, but the user
gains no other power from the software.

12 What freedom
...ethical consequences

brings

Free software permits legal sharing. This is an ethical is-
sue. Do you want to encourage sharing? Should schools
teach kids to be selfish, as required by the laws for restrict-



Making a Living with Free Software

ed software?

As a practical matter, kids want to share. They want to
help their friends. And as a practical and moral matter,
everone wants others to be law abiding, even if they them-
selves are not.

So a government should arrange that being law abiding is
best, for legal, moral, and practical reasons.

Let me return to freedom:
Freedom brings the freedom to share. You have
the legal right to help others.
legal right to collaborate.

your children to share the software they have,
legally.

You have the
You can teach

People who use binary-only software packages are forbid-
den to study them, learn from them, modify, or customize
them. They gain no power from the software, except in so
far as the package itself solves a problem.

Free software provides more than a solution; it provides
the means for people to learn and become as good as or
better than the programmers who wrote the software.

It empowers people who previously were kept out of the
circle.

13 Schools

Before talking about business models, let me talk briefly
about schools.

Students in school like to give copies of programs to their
friends. Often, this giving is illegal. The programs’ distri-
bution is restricted and the school children are supposed to
insist that their friends, or the school, purchase additional
copies.

If you are a student or teacher or administrator in a school,
you can spend a great deal of time trying to enforce the

law.

Or you can teach your students to disobey the law. This
common, but is a poor way to educate a society.

Even if people are not themselves law abiding, they always

29

hope their neighbors will be law abiding and honest.

The solution is to adopt free software. Then you can en-
courage your students to give copies to each other: you
can encourage them both to abide by the law and to share
with others.

And of course, you can encourage the students to study
the software that they have.

Students can learn to program, to maintain systems, and
they can learn to learn, which is very important in a chang-
ing world.

14 Advantages to business

Now I would like to talk about the business of free software.
First, some background;

Free software imposes no legal barriers on the use of soft-
ware. Free markets mean that software is inexpensive.
Combined, these factors mean that free software reduces
the ‘barrier to entry’ that often halts or prevents people
from going into a new business.

In addition to reducing barriers to entry, free software re-
duces costs of operation. For example, as I said earlier,
a good many of my correspondents pay telecommunica-
tions costs by the minute. They (or their supporting in-
stitutions) pay more for longer messages than for shorter
ones. They prefer that I send email as plain text, which
is not only an international standard, but conserves their
resources.

As a managerial matter, a free software business is easier
to run than a restricted distribution business.

Firstly, free software requires less policing than propri-
etary, restricted code since the product is sold in a com-
petitive, free market where artificial retraints are not re-
quired. You do not have to lobby your government to
police software pricing; the market does that for you.

You do, of course, have to persuade your government to
enforce the free software license. Otherwise, people will
take your work and give you nothing in return. They will
fail their obligations to you.



30

Secondly, free software requires that your business focus
on selling solutions to customers rather than on policing
them.

This means that you can simplify your communications
to your employees. You can tell them that their job is to
create solutions to sell.

Otherwise, you have to tell them the rather more complex
and mixed message that their jobs are both to create so-
lutions to sell, and also, to enforce policing so that that
some people who want to use your solutions are prevented
from doing so.

15 The ‘manufacturing delusion’

Now let me discuss a delusion — a delusion that I hope
you avoid.

The idea that you should sell software itself is the ‘man-
ufacturing delusion’. This is a business model. It is a
decision to operate a business as if the software you dis-
tribute is similar to shoes or trucks. Given police support,
as in the United States, companies can follow this business
model. It is a mistake.

Software is not like a shoe or truck that is manufactured
and then sold.

As a practical matter, perhaps 3/4 of the costs for a typical
software package come after the software is first released.
These are costs of ‘maintenance’ the costs of adapting
existing software to new hardware, the costs of debugging
it, and the costs of extending the software to handle new
tasks.

A person who obtains a computer program does not want
just the original, as with a pair of shoes or a truck. The
user wants the debugged versions, the extended versions.

The ‘manufacturing delusion’ says to sell software at a high
initial price, as if it were a truck or shoe, and then provide
the fixes and improvements at little or no additional cost.
This leads to disaster.

For one, the owners of the software company see that fixes
and improvements cost them money, rather than generate
revenue. So they cut back on fixes and improvements. In-
stead, they encourage their staff to focus on initial sales to

Free Software, Volume 1, Issue 01, Jan, 2002

generate revenue. But existing customers then become up-
set and move to a competitor who offers a similar product
that is better.

And since it is cheap to manufacture new copies of soft-
ware, a competing company will reduce its prices to attract
people to it.

Customers will only stick to one company if they feel they
have no choice: they will stay only if they see that the cost
of changing is higher than the cost of staying.

This means that a successful company must become a mo-
nopolist, and drive everyone else out of business, or at
least, drive enough competitors out of business that the
majority of its customers feel they have no choice of ven-
dors.

Also, of course, a company must make sure that no one
else manufactures CDs with its software on it. So the
successful monopolist will persuade its government to use
its courts and police and foreign negotiators to prevent
what it will call, dramatically, ‘software piracy’.

In the United States, as I mentioned earlier, the company
that sells me electricity hired a ‘software license compli-
ance manager’ to make sure that its engineers did not take
work home with them. If the engineers took work home,
they would take the software. And if they took the soft-
ware, the company would be liable in court for breaking
their software license. It is cheaper for the company to
pay for its own policing than to end up in court.

I pay for this policing when I pay for electricity.

The ‘manufacturing delusion’ leads to catastrophe for all
except the successful monopolist.

16 Why enter the software indus-
try?

Because competition in a competitive market forces down
the price of free software, no one should enter the soft-
ware industry to sell software as such. Instead, a business
should enter the industry to make money in other ways.

In a free software industry, companies and people hardly
sell software itself — manufacturers sell CDs with software



Making a Living with Free Software

on it, but prices are reasonable. Instead, software compa-
nies and people sell services associated with software or
hardware or other solutions.

What services do I mean? Most directly, help in using
a computer, or, to take more specific examples, help in
setting up a packet radio network, or help in creating and
nurturing a warehouse data base.

Less directly, and increasingly, hardware companies that
sell telephones or desalinization plants, add software to
their products to make them more attractive to buyers.

The most common software business is that of support:
to introduce people to computers, teach them how to use
computers, fix problems as they arise, customize the soft-
ware to local conditions, and so on.

Free software distributions include programs for secure
communication via email, publishing, browsing, budget-
ing, and the like.

Training and support includes these as well as helping peo-
ple to manipulate images, serve Web pages, or run an
e-commerce site. The Debian GNU/Linux free software
distribution has over 4,000 packages.

17 Business models

Now let me briefly discuss several business models.

First, paid-for training. It goes without saying that a gov-
ernment could pay for this kind of education, and some
do. But I am thinking here of education that people pay
for privately.

Famously, private educational and training services pro-
vide quick profits for those who enter the business early.
(Eventually, the ease of entry means that more and more
enter the industry and profits decline.)

A second model is summarized by the phrase ‘Give Away
the Razor, Sell Razor Blades’. This describes the business
model that the Gillette company adopted a century ago for
its razors. It did not quite give away the holder for its razor
blades, but it sold them at a loss; and it made money by
selling razor blades. And it still does. I myself have paid
the Gillette company far more for the razor blades I have
bought from them than for their razors.

31

This is one of the things done by our sponsor, Ron’s Dat-
aCom. It sells the value inherent in providing a complete
software system.

Ron’s Datacom and other free software companies, like
Red Hat, also use the software as a ‘Market Positioner’:
the software brings people to them to purchase their other
services. This is a third business model

Free software companies sell a brand, like EasyLinux or
Red Hat — that is to say, the companies get paid for
providing a trusted product. This depends on having a
known and good reputation.

Companies can do this in two ways: one, quite obviously,
is to sell a software distribution. Customers know the
company selected the software and did a good job, so the
customer does not have to do the work.

A second, more subtle way to sell a brand is to sell certifi-
cation: to guarantee to others that some other product is
good.

FSF-CHINA, for example is considering this: students
must pass examinations to gain certificates of competence.

Besides selling services, or selling a brand, or selling the
value inherent in a complete system, businesses can sell
other kinds of products. We call this fourth business model
‘Selling an adjunct’.

One kind of product is that which goes with or explain a
program. For example, O’Reilly sells computer books?.

Similarly, a computer manufacturer can put together hard-
ware, or recondition old machinery, and load it with inex-
pensive, customized, free software.

(Again, early entrants can make large profits, before the
industry matures.)

‘Widget Frosting’ is the name of a fifth business model that
is similar to ‘Selling an Adjunct’, except that the product
sold is more important than the software.

In English, a widget is an unspecified, manufactured o-
jbect. Frosting is what you put on a cake, to make it
more tasty. ‘Widget Frosting’ is the process of making a
manufactured object more desirable to customers.

LUnfortunately, most books of O’Reilly are proprietary, not free
— FSM



32

If you sell an Ethernet card or other small bit of hardware,
you want your product to operate everywhere. Otherwise,
you are making your market smaller for no good reason.
One way to expand your market is to make the software for
it free; this way others can adapt and use your hardware
on their equipment, gaining sales for you.

More grandly, IBM, a large corporation, found that some
of its customers refused to buy bigger and more expensive
computers from IBM, even though they needed the larger
capacity. The customers were afraid that their existing
software would not run on the bigger machines.

So IBM has adopted GNU/Linux to its whole range of
hardware from its smallest laptop to its largest mainframe.

As a result, an IBM saleman can say ‘look, GNU/Linux
runs on the machine you are using now; and it runs on
this bigger machine. Your software will run, too. So you
can buy the bigger machine safely.’

IBM uses the software to sell its hardware.

I should mention here that most software is not written
for sale, and never had been. Many people do not realize
this.

Instead, most software is written for use in other products,
like airplanes or ships, or in business or database systems.
On its own, none of this software has what might be called
a ‘sale value’; it has only a ‘use value’.

In the United States, less than 10% of all software is writ-
ten to be sold.

However, the software that most people think about is sold
under the ‘manufacturing delusion’. It is visible. People
who see a PC often think of the software on it. People
who see a car or truck seldom think of the software in it.

I have been talking previously about the kind of software
that people often think of selling, if they suffer from the
‘manufacturing delusion’. What I want to turn to now is
software that quite obviously has a ‘use value’ but whose
‘sale value’ is more dubious.

Companies that manufacture trucks or washing machines
or electric generating plants often use the ‘Widget Frost-

ing’ business model, at least in part.

They create software that runs inside their products —

Free Software, Volume 1, Issue 01, Jan, 2002

embedded software — and thereby make their products
better than they would be otherwise.

There are two reasons such companies adopt free software.
First, free software provides the company with an existing,
complex system that works. The companies need to do
less work of their own. It costs them less. Second, the free
software leads to better products, so customers like them
more. So the companies sell more.

Of course, other companies can use the same software:
you need to give people a reason to buy from you. Here is
where virtue becomes profitable; people will buy from you
if your hardware is better, or your service is better, or if
they like you for some other reason.

And, of course, if you are not well known, people will be
more likely to risk buying from you if they know they can
hire someone else to work on your product. Your reduce
your customers risk by providing them with free software.
It is the paradoxical rule: if it is easy for your customer to
leave you, your customer is more likely to stay.

Now I want to turn to business models that do not directly
generate revenue, but which reduce costs.

Cost-sharing cuts costs.

Suppose you are setting up a Web site. Perhaps you want
to advertise your firm or inform people of what you do;,
perhaps you want to sell things. To succeed, you need
reliability, you need speed, and you need customizability.

How are you going to get these?
You have four choices:

You can buy a restricted-distribution Web server. In this
case, you are betting that the seller’s goals match your
own, that the seller has the technical competence to do y-
our job well, and that the seller will provide customization
hooks that satisfy you.

A second choice is to write your Web server. By doing
this, you get exactly what you want.

A third choice is to join the Apache group. This group
consists of various firms that realized that it was smarter

to join their efforts together.

A fourth choice is to adopt the Apache server, but not join



Making a Living with Free Software

the Apache group.

The first choice is increasingly unpopular. Restricted-
distribution companies have not provided the services or
tools that people want.

The second choice is more popular than you might expect.
It turns out that Web servers are reasonably easy to create.
I have read of several different ones created for special
purposes. However, not many write their own.

World wide, the two most popular choices are the third
and the fourth.

If you adopt an Apache server, but do not join the group,
you gain many of the advantages of others’ work, but you
lose the advantage of being in the middle of the decision
making process: you are an observer of what others do.
(This is what I do myself, since I run my Apache Web
server on my home machine only for my own use — mostly
for testing.)

If you wish to be central, you join the Apache group.
Yet another model is to reduce the chance of being hurt.

Cisco is the classic example of a company that decided to
free some of its software so as to reduce the risk that it
would be hurt sometime in the future.

Cisco manufactures and sells networking equipment. It
also has a large local network with printers on it. (I think
it uses more than 10,000 printers.)

The company wanted software to run its printers efficient-
ly. So it hired two programmers to do the job. And they
did.

However, the two programmers realized that they might in
the future leave Cisco and that the company would have
difficulty maintaining the software. So they suggested to
Cisco that the software be made free.

This way, the software would be used outside the company
as well as inside it; and people outside it would learn to
fix and improve it.

Meanwhile, Cisco would have no sale value to lose, since
they do not sell this product. So they would gain protec-
tion against a possible future loss.

33

18 Conclusion

In conclusion, your opportunities to do business depend
on your legal and practical freedom to:

copy,
study,

modify, and
redistribute

software under a free licemnse.
Freedom is key.

Freedom leads to:

collaboration

lower prices

reliability

efficiency

security

fewer barriers to entry

fewer barriers to use

more opportunities in business.

About the Author Robert J. Chassell was a founding
Director and Treasurer of the Free Software Foundation,
Inc. The FSF was founded to support the GNU Project
which restarted the movement towards free software and
open sources. The GNU/Linux operating system and as-
sociated applications are the outcome of these efforts by
the Foundation.

Chassell writes and edits. He is the author of “An Intro-
duction to Programming in Emacs Lisp”, co-author of the
“Texinfo” manual, and an editor of more than a dozen
other books. He graduated from Cambridge University, in
England. He flies his own airplane, and has an abiding in-
terest in social and economic history. He could be reached
by email: bob@gnu.org

Cr i g g g gaiio



