Vim, a Popular Text Editore

Bram Moolenaar

Updated on Dec 20, 2001

Abstract

The main author of the free text editor Vim writes
about how it came to be and how it is being devel-
oped. The Charityware concept is discussed and why
Bram chose to use it for Vim. Diving into the data
structures and functions to manipulate them, he gives
you some idea of how this complex program works.
Some of the new features that Bram has added in
Vim 6.0 are discussed.

1 Introduction

There is a small chance you have never heard about
Vim. It is included with almost every GNU/Linux
distribution as the standard Vi editor. For many sys-
tems such as FreeBSD and Sun Solaris 8 it comes as
an extra package you can easily install. For other
systems (MS-Windows, Macintosh, OS/2, etc.) ex-
ecutables and source code can be downloaded from
many places on the internet.

Vim is a text editor like Vi, but with many extra fea-
tures; of the Vi-like editors Vim has often been voted
the best — in fact the main competition comes from
Emagcs, in all its different versions. In 1999 Emacs
was selected the winner in the Linuxworld text edit-
ing category, with Vim second, but in February 2000
Vim won the Slashdot Beanie award for best open
source text editor pushing Emacs into second place.
So these editors are in the same league.

One of the main advantages of Vim (and Vi) is that

53

the most often used commands are typed with al-
phabetic characters. This is much faster than using
Control or Meta key combinations, and less stressful
on the fingers. The extra time it takes to learn the
commands is soon repaid by allowing you to work ef-
ficiently. However Vim, unlike Vi, also supports the
use of cursor keys in Insert mode and so a begin-
ner can get started quickly before gradually learning
more commands to gain speed.

Compared to other Vi-like editors Vim has very many
features: syntax highlighting for over 180 languages,
automatic indenting for C code, a powerful script lan-
guage, etc. There is something for everyone.

The development of Vim is ongoing. At the moment
of writing, the work for Vim version 6.0 has finished
in September; more about that further on. The main
goal for Vim is to be a very stable and useful tool;
besides adding more features, improving the exist-
ing features and fixing bugs is pursued very actively.
Compare that to the original Vi, for which not much
work has been done since 1985.

This picture shows the GTK version of Vim, editing
C source code with syntax highlighting. The search
pattern "msg_didany" is highlighted with a yellow
background. There is a Visual selection (grey back-
ground) with a green, blinking cursor. At the bot-
tom "-- VISUAL--" indicates the current mode and
at the right the position in the file is shown.

54

2 History of Vim

A long time ago I got myself an Amiga computer. S-
ince I was used to editing with Vi, I looked around for
a program like Vi for the Amiga. I did find a few so-
called ‘clones’, but none of them was good enough; so
I took the best one, and started improving it. At first
the main goal was to be able to do all that Vi could
do. Gradually I added some additional features, like
multi-level undo.

When it was working reasonably well, I released a ver-
sion of Vim (then called “Vi IMitation”) on a public
domain disk set for the Amiga, made by Fred Fish.
Then others started sending me patches. A few peo-
ple took the effort to port Vim to other platforms,
like MS-DOS and Unix. I added more features and
made it work better. By that time it was justified to
rename it to “Vi IMproved”. Over time the code has
been redesigned and extended so much that almost
nothing of the original ‘clone’ remains.

When I started working on Vim it was just for my
own use. After some time I got the impression it
was useful for others, and sent it out into the world.
Since then I'm working more and more on making the
program work well for a large audience. It’s fun to
create something useful. Also, there is a nice group of
co-authors and power users, which is very inspiring.

Here is an overview of Vim’s history:

1991 Nov 2 - Vim 1.14:
First release (on Fred Fish disk #591).

1992 - Vim 1.22:
Port to Unix. Vim now competes with Vi.

1994 Aug 12 - Vim 3.0:
Support for multiple buffers and windows.

1996 May 29 - Vim 4.0:
Graphical User Interface (largely by
Robert Webb).

Free Software, Volume 1, Issue 01, Jan, 2002

1998 Feb 19 - Vim 5.0:
Syntax coloring/highlighting.

2001 Sep 26 - Vim 6.0:
folding, plugins, vertical split

2.1 What does IMproved stand for?

By version 1.22 Vim included more features than Vi.
I decided to change the name from “Vi IMitation” to
“Vi IMproved”. Over time the gap has grown wider,
now it’s hard to think of a reason to use Vi instead
of Vim. I would recommend all Vi users to switch
to Vim. The list of advantages is very long, here are
just a few:

- Unlimited line length and allow NUL bytes:
Possibility to edit any file, including
binary files.

- Multi-level undo and redo: Don’t worry
about destroying your file when caps-lock
was accidentally on.

- Multiple windows and buffers: Edit
several files at the same time, copy
text between them.

- Syntax highlighting: Quickly understand
the structure of the text and spot errors.

- Command line history and completion:
Correct typos, recall old commands,
quickly enter long file names.

- Delete and put rectangular text areas:
Edit a table.

- Error message parsing: Run the compiler
and immediately jump to locations where
errors have been found.

- On-line help with hyperlinks: Find
comprehensive documentation for any
command and jump to related subjects.

- A powerful script language: Add your
own extensions.

Vim, a Popular Text Editor

2.2 Developing Vim

After a couple of years of hard work version 6.0 is now
finished. T have done the core items myself, but many
people join in. Sometimes they create a new feature
and send me a patch that I can include right away, but
mostly the patches I receive need to be integrated into
the current version. Few people can overview how
all the parts of Vim work together, since the code
has become quite complex. For example, someone
created a patch for multi-line search patterns. This
showed how it could be done, and the locations in the
sources that had to be changed. Unfortunately the
author used pointers to text lines, and didn’t realise
that these can become invalid. I had to go through
all the new code to fix this. Although that was a lot
of work, the patch I got helped me by setting me on
the right track.

Users ask questions on the Vim mailing lists, which
indicates to me what the most common problems are.
Sometimes people send me patches or requests for
new features. I think that this co-operation of users
and co-developers is the main strength of how Vim
is being developed. Users and developers communi-
cate directly with each other and with an open spirit.
This is how open source software can grow to become
better than commercial software.

3 Distribution

Vim can be distributed freely; however, there are
some modest restrictions. This is the text that comes
with Vim:

Vim is Charityware. You can use and copy it as much
as you like, but you are encouraged to make a dona-
tion to orphans in Uganda. See iccf| below.

If you include Vim on a CD-ROM, I would like to re-
ceive a copy. Just so I know which Vim distributions

55

exists in the world (and to show off to my friends :-)).
DETAILS

There are no restrictions on distributing an unmodi-
fied copy of Vim. Parts of Vim may also be distribut-
ed, but this text must always be included. You are
allowed to include executables that you made from
the unmodified Vim sources, your own usage exam-
ples and Vim scripts.

If you distribute a modified version of Vim, you are
encouraged to send the maintainer a copy, including
the source code. Or make it available to the maintain-
er through ftp; let him know where it can be found.
If the number of changes is small (e.g., a modified
Makefile) e-mailing the diffs will do. When the main-
tainer asks for it (in any way) you must make your
changes, including source code, available to him.

The maintainer reserves the right to include any
changes in the official version of Vim. This is nego-
tiable. You are not allowed to distribute a modified
version of Vim when you are not willing to make the
source code available to the maintainer.

The current maintainer is Bram Moolenaar . If this
changes, it will be announced in appropriate places
(most likely www.vim.org and comp.editors). When
it is completely impossible to contact the maintainer,
the obligation to send him modified source code is
dropped.

It is not allowed to remove these restrictions from
the distribution of the Vim sources or parts of it.
These restrictions may also be used for previous Vim
releases instead of the text that was included with it.
SUMMARY

Vim is Charityware. You can use and
copy it as much as you like, but you are
encouraged to make a donation to orphans in

Uganda. See iccf| below.

If you include Vim on a CD-ROM, I would
like to receive a copy. Just so I know

56

which Vim distributions exists in the world
(and to show off to my friemnds :-)).

DETAILS

There are no restrictions on distributing
an unmodified copy of Vim. Parts of Vim
may also be distributed, but this text
must always be included. You are allowed
to include executables that you made from
the unmodified Vim sources, your own usage
examples and Vim scripts.

If you distribute a modified version

of Vim, you are encouraged to send the
maintainer a copy, including the source
code. Or make it available to the
maintainer through ftp; let him know where
it can be found. If the number of changes
is small (e.g., a modified Makefile)
e-mailing the diffs will do. When the
maintainer asks for it (in any way) you
must make your changes, including source
code, available to him.

The maintainer reserves the right to
include any changes in the official version
of Vim. This is negotiable. You are not
allowed to distribute a modified version

of Vim when you are not willing to make the
source code available to the maintainer.

The current maintainer is Bram Moolenaar

If this changes, it will be announced in
appropriate places (most likely www.vim.org
and comp.editors). When it is completely
impossible to contact the maintainer, the
obligation to send him modified source code
is dropped.

It is not allowed to remove these
restrictions from the distribution of

the Vim sources or parts of it. These
restrictions may also be used for previous
Vim releases instead of the text that was
included with it.

Free Software, Volume 1, Issue 01, Jan, 2002

I prefer to give users much freedom in using the Vim
source code. The main reason to add restrictions is to
avoid what happened to Elvis some time ago: some-
one took the Elvis source code, added a few nice Win-
dows GUI things, and started selling it. Since those
changes were not available as source code and most
of that editor was still the original Elvis code, that
didn’t sound fair. Not only because people have to
pay one guy for software that someone else made, but
also because the author refused to publish the modi-
fied source code and allow others to further improve
it. That’s why I added the restriction that the source
code of modifications must be made available to me.
That still leaves room for a company to make a mod-
ified version of Vim and negotiate with me if their
changes must be made public or not. This gives me
the right to decide what happens with the software 1
created.

3.1 The future of open-source software

Which software will be open-source and which will
not? I don’t think there is a definitive answer to this
question. For a given application, is there someone
willing to create and maintain it as open-source soft-
ware? That depends a lot on the motivation someone
has to spend time on this without being paid for it.
That is an uncontrollable process, with unpredictable
results. Not too long ago it was thought that on-
ly small programs would be open-source, since large
programs would require the long-term commitment
and large investment that only commercial companies
could afford. The development of Linux has proven
this to be wrong, and that’s not a one-off exception.
Several other large projects have popped up and are
successful, such as KDE.

In practice I see that most people are only motivated
to make software they would use themselves. That’s
certainly the case for Vim: I use it myself every day.
This is hardly a restriction though, since more and
more people are learning how to write programs. It
does restrict the number of people that are motivated
to spend time working on a specific program. Theo-

Vim, a Popular Text Editor

retically it would be possible to compute the number
of people that could work an open-source program:

available = interested x ability x motivation

where:

available — number of people available to work on
an open-source program

interested — number of people interested in using
the program

ability — percentage of this group that are able to
write the program

motivation — chance that someone is motivated to
write the program

Note that the number of people interested in the pro-
gram also depends on the availability of existing pro-
grams. If there is no software that is good enough
or it is too expensive, this number will be higher. If
there’s already a program available that’s cheap and
good, the number will be much lower.

Not everybody is able to write software and there is
a large difference in required skills for different pro-
grams. If the goal is to make a program for software
engineering, there is a large chance that the target
audience includes people that have the skills to make
the software. If the program is to process data for
rare birds, the percentage is much smaller.

The motivation factor is the big unknown in this for-
mula. How many of the people that are able to write
the program are actually willing to do it? It would
be interesting to perform a study on this, and find
out if this factor can actually be estimated.

A correction to the formula needs to be made for
people who are willing to write a program for others.
That applies especially to software written for the
disabled. Otherwise, I think this group is quite small.

If we have computed the number of people who are

57

available to write the program, the big question is if
it will actually happen. Or better: When it will hap-
pen. Given enough time, I’'m sure that every program
for which there is a need will be made. It should be
possible to make a formula to compute the chance
that the program will be written this year. That’s
left as an exercise to the reader ...

Overall there are a lot of undetermined factors in this
formula. I would conclude that it’s unpredictable how
much open-source software there will be in the future.

4 Charityware

Since Vim is open-source and freely distributable,
users don’t have to pay to use it. Even so quite a
few people who use Vim regularly expressed to me
that they wanted to reward me for my work in some
way. I didn’t really need extra money myself and did-
n’t like the idea of some people giving me money for
a program that is free. That’s when I thought of the
Charityware concept. The basic idea is that every-
body who uses Vim is asked to donate to a charity.
Thus the use of Vim is free, but if you think it’s worth
something, give that money to a good cause.

How did I chose the charity? Well, I have worked for
a year as a volunteer with a project in the south of
Uganda. This is an area that has been struck hard by
AIDS. Estimates are that 10 to 30adults are infect-
ed by HIV. Many parents die, leaving their children
behind. The project helps these needy children in
several ways. We find a new home for the child. We
make sure the child can go to school, gets medical
attention and care made to measure.

After T returned from Uganda, my heart was still
there. I decided the least I could do was to keep sup-
porting the project by raising money for them. The
connection to Vim was a very logical one. Thus now
I'm asking Vim users to consider donating for the
orphans in Uganda. I have also setup an adoption
program. You can financially adopt a child, which

58

means that the child gets long-lasting help, which is
best for the child. Since we work only with volunteers
and the money is directly sent to the project, almost
all the money is really used in Uganda.

You can find more information about this at

http://iccf-holland. ory.

(Nabasagi Morine is one of the children sponsored
through ICCF Holland.)

4.1 Does the Charityware concept really
work?

I have received many donations for the orphans in U-
ganda through the Charityware concept. Very irreg-
ular, sometimes nothing for a month and then sev-
eral at once. Some small amounts, some quite big.
I can’t mention the exact amounts, because not all
donations go through me, and it is not always clear
if a donation was done because of Vim. An estimate
is that we received $2000 in 1997 and $4000 in 1998.
A remarkable portion comes from Germany.

It is not only the money. The Charityware concept
also helps to make people aware of the need of other
people. If T would not have started this, few people
would know about the project in Uganda. For many
people it takes time to get used to the idea that there
is more to life than making money and taking care of
yourself. T have had reactions from people who could
not afford to donate, but were moved by the concept.
In some way it seems Charityware changes people a
bit.

4.2 TIs Charityware a good idea for other

programs?

Check these arguments whether it is a suited to your
program:

Free Software, Volume 1, Issue 01, Jan, 2002

e You don’t need the money yourself. If you like
spending money on a bigger car than your neigh-
bour, Charityware is probably not for you.

e You currently provide your program as share-
ware, but you don’t get much money from it,
because people don’t like giving it to you.

e You are currently providing the program com-
pletely for free, and think it is worth something.

When you decide to go for Charityware, what good
cause can you use? The best is one with which y-
ou are in contact personally. Users will then better
understand your motivation. Otherwise, find a small
organisation that you trust and needs more money
and attention. I discourage supporting large organi-
sations, especially if they already have enough ways
to contact potential sponsors.

4.3 Variations on Charityware

I do not force Vim users to make a donation to the
project in Uganda. And there is no amount specified.
This gives a lot of freedom to the user. He may read
the note about AIDS orphans and then forget about
it.

Alternatively, users can be told that they _must_
make a donation, and specify an amount. This re-
mark can be put in a place that does not go unno-
ticed for the user. Hopefully this will generate more
donations, but be careful not to annoy the user. You
must set a minimum, otherwise the enforcement to
donate is meaningless. It will be difficult to decide
on an amount though.

A more forceful approach would be to enforce the
payment by blocking some or all functionality until
the donation has been made. This is not a good op-
tion since it conflicts with the charitable ethic; poor
people would not be able to use the program.

Vim, a Popular Text Editor

5 Vim internals

Vim has grown into a very large program. Here is
an overview of the main parts and in which source
files they can be found. I have included the file size
for Vim 5.6, to give you an idea of how much code is
required for each part.

startup code, main command loop
main.c 43538

handling Normal mode commands
normal.c 140320

executing operator commands
ops.c 109742

displaying text on the screen
screen.c 165136

multi-window handling
window.c 52168

multi-buffer handling
buffer.c 63743

typeahead, mappings and abbreviations
getchar.c 76964

terminal input and output
term.c 109869

reading and writing files
fileio.c 122685

swap file management
memfile.c 31516

managing lines of buffers
memline.c 114193

undo and redo
undo.c 29014

59

Insert mode
edit.c 142302

keeping marks in files
mark.c 25582

editing the command line
ex_getln.c 89509

executing Ex commands
ex_docmd.c 176724

complex Ex commands
ex_cmds.c 100549

Quickfix commands
quickfix.c 31760

regular expression matching
regexp.c 73771

search commands
search.c 93721

tag commands
tag.c 69337

setting options
option.c 148884

Vim script commmands, expression evaluation
eval.c 122346

System-specific code
os_*.c up to 94640

Generic GUI code
gui.c 73468

Motif GUI code
gui_motif.c 26963

Athena GUI code
gui_athena.c 25220

60

common Motif and Athena GUI code
gui_xl1l.c 62913
GTK GUI code
gui_gtk*.c 158289
MS-Windows GUI code
gui_w32.c 141809

Macintosh GUI code
gui_mac.c 82600
menu handling
menu.c 36164
Perl interface

if_perl.c 21246

Python interface
if_python.c 51814

Sniff interface
if_sniff.c 25035

Notice that the files are generally big; this is because
I prefer to keep related items together in one file.
There could be more and shorter files. That would be
preferred when using a revision control system. For
me the current way of working doesn’t cause prob-
lems, and I don’t see a good reason to spend time
on changing it. All files are together in one direc-
tory. The main advantage is that a simple ”grep”
command can be used to find all locations where an
identifier is used.

There are a few remarkable items in the list. The
undo functionality is relatively small. That’s because
it uses a well thought-out mechanism, which is simple
and powerful. On the other hand, you can see that
the GUI files are generally big. Coding for the GUI
just tends to be a lot of work.

Professor Michael Godfrey has done some studies on
the Vim architecture and its development. You can
find this at http://plg.uwaterloo.ca/”

Free Software, Volume 1, Issue 01, Jan, 2002

migod/.

Following are a few specific items that you might find
interesting.

5.1 Portability

Vim was made such that it works on many different
operating systems. This wasn’t easy. Just support-
ing the most popular Unix versions is already a big
task. Adding support for MS-DOS and MS-Windows
gives the additional problem of using file names with
a backslash in them. Machines such as the Amiga
and the Macintosh have a different kind of operating
system, which require specific solutions.

One of the main choices in Vim was to use the good
old K&R C. This can be compiled on just about any
system. The advantages of using ANSI C can be
mixed into this, by using the pre-processor. For ex-
ample, function prototypes look like this:

void ml_open_file __ARGS((BUF *buf));

For non-ANSI compilers the "__ARGS(())" part eval-
uates to "()". These prototypes are generated with
the cproto program. This not only avoids the need
to type these prototypes, it also avoids errors. It’s
a bit more work to use the __ARGS() construct, but
it makes Vim work on old systems, and still allows
modern compilers to check the function prototypes,
which avoids a lot of trouble.

To be able to compile Vim on many different systems,
there is a system-specific file for each of them, such
as "os_unix.c" and "os_amiga.c". It contains most
of the system-dependent code. However, this does-
n’t cover everything. There are a lot of "#ifdef"
constructs in the generic files. Sometimes I clean
this up to avoid the clutter. This involves creating a
"mch_xxx ()" function in each of the system-specific
files, and calling it from the generic files. Since I
don’t have all these different systems, it requires co-
developers to test this change.

Vim, a Popular Text Editor

For Unix “autoconf” is used to detect all kinds of
things about the system. It finds out which include
files there are, the location of libraries, etc. This us-
es a description file with the tests to be done, called
"configure.in". Autoconf processes this file and
produces the "configure" shell script. Care has been
taken that this shell script can be run on any Unix
system. Although using autoconf isn’t easy, I still rec-
ommend it. If you want your program to be portable
over different Unix systems, autoconf is the way to

go.

The standard way is for the user to run "configure",
which generates the Makefile. Vim is a bit differ-
ent, because there is already a Makefile in the dis-
tribution. When running "make” for the first time,
it will start configure for you, with the default ar-
guments. This generates a "config.mk" file, which
is included from the Makefile. The main advan-
tage of this different approach is that the Makefile
can contain examples of configure arguments, which
you can uncomment. Otherwise you would have
to figure out the configure arguments by running
"configure --help", inspecting its output and typ-
ing the arguments to configure. For Vim you can
edit the Makefile, read the comments, and remove
or insert a few "#" characters right there. This is
much more convenient. Moreover, running configure
directly still works, thus this approach doesn’t have
drawbacks.

5.2 Storing text

The main task of a text editor is to read a file, modify
it and write it. There are quite a few demands for how
the text is kept inside the editor:

- Reading and writing files should be fast.
No restrictions on line length, file
length or character set.

Making changes in the text should be
quick.

The code to handle the text shouldn’t be

61

too big.

- Allow for undoing changes.

- When the system crashes, recovering
unsaved changes must be possible.

There is no easy way to meet all these. First of all,
it’s not possible to keep all text in memory. Some
systems just don’t have enough, and for others it’s
very inefficient to use a lot of memory. That is why
I chose to use a swap file. File access can be slow,
so some of the text should be kept in memory via a
caching mechanism. Since file I/O works faster when
using fixed-size blocks of a few Kbyte, it’s better not
to write individual text lines to the swap file. After
considering a few alternatives, I decided to use a con-
struct that stores a number of lines in a block. These
blocks are handled similar to the BSD "db" functions,
but optimised for how Vim uses text.

You can find the code to deal with blocks of text lines
in memfile.c. It maintains a cache to reduce the disk
I/O. This works very much like any cache system:
blocks are written to the swap file when using too
much memory, or to save changes that the user made.
This allows recovering the changes from the swap file,
in the event that the system goes down unexpectedly

Packing text lines in a block is done in memline.c.
Since the blocks are fixed in size, the number of lines
that fit in them varies. Quite a lot of code is required
to handle this, to be able to insert lines, delete lines
and change lines. The complexity mostly comes from
situations where an inserted line doesn’t fit in an ex-
isting block, requiring the need to split that block in
two. There is also an exception: If there is a single
line that doesn’t fit in a normal block, a block is creat-
ed that is big enough to contain the line. This allows
handling lines of any length, without compromising
the efficiency of handling for short lines.

The blocks with text lines are stored in the swap file
without a specific ordering. If the blocks were or-
dered, inserting a block halfway into the file would
require all remaining blocks to be shifted, which is
very slow. To be able to find a line by its number,

62

index blocks are used. An index block contains a list
that tells which line is in which block. If a file is
big, this list doesn’t fit in a single block. It is then
split over several blocks, and another index block is
made to refer to these index blocks. This forms a
balanced tree of index blocks, with the text blocks as
the leaves. This construction has proven to be very
reliable and efficient.

5.3 Syntax highlighting

Parsing a file to recognize its structure can be com-
plex. Add to that the demand that parsing might
have to start anywhere in the file, and you end up
with a difficult task. Fortunately we were able to s-
plit the task into two pieces: The core syntax engine,
which has been implemented in C, and the specifica-
tion of the syntax items for each language with pat-
terns. This allows adding support for a new syntax
without recompiling Vim.

The basic idea is that a regular expression pattern is
used to specify an item of the language. Vim tries
to match that pattern in each line of the text. If it
matches, the matching text is highlighted. For items
that are kept within one line this is quite simple to
implement. For items that cross a line boundary it
becomes more complicated. In Vim you need to spec-
ify a pattern for where the item starts and where it
ends. For example, a C comment starts with "/*"
and ends with "*/". But what happens when Vim
starts displaying a line halfway a comment? There is
no "/#*" there, thus it would not be recognized as a
comment line. This requires searching backwards in
the text to find out if the text is inside a comment or
not. This is called syncing.

Another construct is nesting. This happens if you
want to highlight the word "TOD0" when it’s inside a
comment. You then have a todo syntax item inside
a comment syntax item. On the other hand, if you
find a ”/*” inside a string, it is not the beginning
of a comment. Thus a string item cannot contain a
comment item. All this is done with contained items.

Free Software, Volume 1, Issue 01, Jan, 2002

For each syntax item the user can specify which other
syntax items it may contain. This fits quite well with
the structure of most languages.

The syntax code maintains a stack of nested syntax
items. For any point in the file, Vim will look for
items that can be contained in the item that is cur-
rently at the top of the stack. Thus this stack rep-
resents the current state of the syntax engine. To
speed up the syntax highlighting, this state is saved
and used again later when the same line is displayed.
When making changes to the text the saved syntax
state may become invalid. A change in one line may
cause a change in syntax for many following lines.
For example: when inserting "/*" to comment-out
some code, all syntax states until the matching "*/"
will become invalid. The code notices that the state
after the ”*/” is the same as the old state, and so all
states after this will also be valid. Thus recomputing
the syntax can stop at this point.

5.4 Data structures

Vim uses many different data structures to store in-
formation. There is a trade-off between using a gener-
ic kind of structure and using a structure specifically
tailored to an application. For example, a string can
be stored in a fixed size array on the stack, a fixed
sized chunk of allocated memory or a dynamically
sized chunk of allocated memory. Which one to use
depends on the type of string to be stored:

1. For strings that have a known maximum size,
using the stack has the advantage that the time
consuming malloc() and free() don’t have to be
used. This can usually be done with file names,
but Vim tries not to restrict the user, thus other
strings can be of any length and the stack is not
suitable.

2. A fixed size of allocated memory can be used
for items that don’t change often. This is used
for option values, for example. It doesn’t waste

Vim, a Popular Text Editor

memory and the overhead of malloc()/free() is
not important.

3. For strings that change often, calling mal-
loc() /free() often consumes a lot of time. This is
especially true for strings and lists that can grow
in size. In Vim a dynamically allocated piece of
memory is used for this - a ”struct growarray”.
The memory allocation is made in large steps, so
that a certain number of items can be appended
without reallocating.

I have ended up creating quite a few data structures
in Vim. The disadvantage is that this has taken a lot
of time, it adds to the complexity and makes mainte-
nance more work. The advantage is that Vim works
very fast and efficient. Compare this with Emacs,
where the main complaint is that it’s slow and con-
sumes a lot of resources. I have the impression that
Emacs uses generic constructs and depends on the
computer to be fast. In my opinion I have made the
right choice. A text editor is used all day by many
people; it is worth investing time and effort in making
it work well.

6 The future

In November 1998 an survey was held to allow Vim
users to vote for changes to Vim. This resulted in
a good overview of what users wanted to be added.
This is the top six:

1. Add folding (display only a selected
part of the text)

2. Vertically split windows (side-by-side)

3. Add configurable auto-indenting for
many languages (like ’cindent’)

4. Fix all problems, big and small; make
Vim more robust

5. Add Perl compatible search pattern

6. Search patterns that cross line
boundaries

63

The first three and the sixth items have been imple-
mented in Vim 6.0. Fixing problems continues as usu-
al! Search patterns have been extended to include all
the Perl features, but they are not directly Perl com-
patible. That would cause problems with backwards
compatibility.

6.1 Folding

One of the first features that was added to Vim 6.0 is
folding. This is a mechanism to hide part of the text,
so that the overall structure can be seen. It looks like
folding paper. This is a big change, impacting on all
parts of the code - and it’s not very clear how a user
would use folding for different kinds of files. I have
already spent quite a bit of time trying to come up
with a good user interface for folding. Since different
users have different demands, I ended up with several
folding modes:

manual — The range of lines that forms a fold is
selected manually.

indent — The indent of a line is used to decide if it
will be folded. For example, all lines which have an
indent of more than 8 spaces can be folded.

expr — Like ”indent”, but use an expression to de-
cide about the fold level of a line.

syntax — The syntax highlighting items specify fold
regions.

marker — Markers in the text are used to specify
the start and end of fold region.

Most methods allow folding without changing the file.
That is required for most people who are just view-
ing a file, or are sharing files with other people. But
it doesn’t allow specifying exactly where the fold-
s need to be. Therefore the "marker” method has
been added. This allows you to insert markers exact-
ly where a fold should start. For example, if you have
a few comments just before a function definition, y-

64

ou can put the marker just above the comment that
should be in the same fold as the function. You can
also include some text to explain the contents of the
fold, for example ”local declarations” or the name of
a function and a short note about it. The disadvan-
tage is that the file needs to be modified to add the
markers.

This picture shows C source code with folds. The
"foldlevel’ is set to show one fold line for each func-
tion. These folds have been defined with markers in
the text, like 71”7, with a short text to explain the
contents of the fold. The fold for the ”lineFolded()”
function has been opened to be able to view it.

6.2 Multi-line search patterns

As mentioned above, I have added the ability to
match a line-break with a regular expression pattern.
The changes to the documentation for this new fea-
ture are quite short; it’s easy to explain the new pat-
terns which can be used to match a line-break. The
changes to the source code were more extensive. The
main issue is that only one line of text from a buffer
is guaranteed to remain in memory. When getting
another line, the previous one may be freed to make
room. This limits the amount of memory used. The
code that was calling the pattern matching function
often assumed that its pointers would remain valid,
but now that this function may need to retrieve oth-
er lines in the buffer to check for a match, this is no
longer the case. The solution is to use locations in the
file - line number and column - instead of pointers

I thought that including the patch for multi-line pat-
terns would be a day of work, but it turned out a
week’s worth of changes. It’s easy to underestimate
the impact of a change. The true scale often becomes
clear only during the implementation and testing of
the new functionality. If this happens in commercial
software development you miss your deadline, go over
the budget and are generally in trouble; thus it is nec-
essary to carefully inspect the impact of a change and
spend time on making a plan. Fortunately, for free

Free Software, Volume 1, Issue 01, Jan, 2002

software development this isn’t all that important.
You just end up spending some more time and the
release is ready a bit later. Therefore it is often not
worth incurring the overhead of planning. That’s a
big advantage of free software development over com-
mercial software!

6.3 UTF-8

Another item that has made it into version 6.0 is in-
ternationalisation (i18n). Vim already supports edit-
ing double-byte files. This is called multi-byte sup-
port, but it actually doesn’t work for more than two
bytes. Since most of the world appears to be moving
to Unicode, that is what I have added. Historical-
ly Vim has internally worked with bytes; therefore
it’s a logical step to use UTF-8 encoding (Unicode
characters encoded as a sequence of 8-bit bytes). An
alternative would be to use wide characters (16 or 32
bit), but that would require all code that handles text
to be changed. Since most text would still be 7-bit
ASCII, it would also be inefficient.

When adding support for UTF-8 there are a few im-
portant decisions to be made. Will all text inside
Vim be encoded with UTF-8, or is there an option
that switches between ASCII, UTF-8 and perhaps
double-byte encoding? Doing everything in UTF-8
has the advantage that most of the code will be sim-
pler, since it only has to deal with one type of en-
coding. But typing characters, displaying text and
copy/paste with other applications may use another
encoding, requiring conversion between UTF-8 and
other formats. This could cause overhead and even
changes in the text. The latter is anacceptable and
must be avoided. If you read a file with Vim and
write it without making changes, you should get ex-
actly the same file.

Thus the main question is whether the text should
be converted to UTF-8 when it is read into Vim, or
kept in its original encoding:

Keep all text internally in UTF-8 format.

Vim, a Popular Text Editor

When reading a file, convert it to UTF-8, when writ-
ing it convert it to the file format. Typed text also
needs to be converted, if the input method does not
supply UTF-8 format. If the screen uses another for-
mat, it will also require conversion.

Keep the text in the original format of the file.

The typed text and characters sent to the screen only
need to be converted when they use another format.
All functions that handle text must be aware of the
possible formats. Conversion needs to be done when
yanking text in one window and putting it in another
if the files use a different encoding.

Both alternatives have their advantages and disad-
vantages. After thinking about this for a while, T
decided to implement a mix of ‘both. The internal
format can be selected. It can be ASCII, UTF-8,
a double-byte encoding or something else. Usually
this should match the environment (the current lo-
cale). When possible, conversion is done between the
file format and the internal format. When the con-
version is not possible (it is unavailable or there are
illegal characters) it is skipped This possibly results
in wrongly displayed text, but at least the text isn’t
modified when it is written back.

7 Conclusion

Vim has grown to become a big open-source program.
Not only is it useful for many people, it can also be
used as an example of how open-source programs are
developed. I hope Vim inspires and helps other open-
source authors with their work.

If you want to use Vim, you can find it in many places:
if you have a GNU/Linux, FreeBSD or Solaris 8 dis-
tribution, look for a Vim package which you can in-
stall easily. For Linux the Vi command may start a
minimal version of Vim, install a package if you want
to use more features.

For information about downloading Vim use this

65

URL: hittp://vim.sf.net/download.php.

A lot of information about Vim can be found on it-
s web site: hittp://www.vim.org. Fortunately Sven
Guckes volunteered to maintain the Vim web site, al-
lowing me to concentrate on developing Vim. Vim
tips and plugins can be found on http://vim.sf.net.
These are created and uploaded by Vim users.

If you have questions, bug reports, or want to help
with Vim development, join one of the Vim mailing
lists. See http://www.vim.org/mail. html.

About the Author Bram Moolenaar studied elec-
trical engineering at the Technical University of Delft
and graduated in 1985 on a multi-processor Unix ar-
chitecture. Although now mainly working on soft-
ware, he still knows how to use a soldering iron.
He was born in the Netherlands, in the area where
tulips are grown, and now lives in Venlo, in the east
of that country. He worked many years for Oce to
design their first digital photocopying machines; he
is currently doing freelance work and spends a lot
of time on the free, open-source text editor Vim
(http://www.vim.org), of which he is the main au-
thor. This involves handling e-mail from users and
co-developers, fixing bugs and implementing new fea-
tures. Bram founded the ICCF Holland founda-
tion (http://iccf-holland.org) to support the Kibaale
Children’s Centre in Uganda. This project helps
AIDS victims by providing schooling, medical atten-
tion and care made to measure. His home page is
http://www.moolenaar.net, and his email address is
Bram@moolenaar .net.

[S. Korea Gov to Use HancomLinux] Jan
9, 2002, South Korean government stepped in-
to GNU/Linux desktop mainstream —120K copies
desktop packages are to be supplied in this year by the
contract between HancomLinux, a company develop-
ing and distributing GNU/Linux distribution and ap-
plications.

