Objective-C is Fun *

Adam Fedor

Objective-C is a language based upon C, with a few
additions that make it a complete, object-oriented
language. Why do I think Objective-C is fun? Pre-
cisely because of this emphasis on simplicity. Abso-
lutely nothing was added to the language unless it
really made a big improvement on the useability of
Objective-C.

Fun, of course, can also lead to danger. And
there is plenty to beware of with Objective-C. Since
Objective-C doesn’t try to improve the C language,
you have to deal with all the faults and caveats of
C. In addition, the philosophy of Objective-C is to
allow for a great deal of flexibility, leaving the pro-
grammer to watch out for potential problems rather
than forcing various restrictions.

For instance, Objective-C provides an object defini-
tion that is completely untyped. This is the id vari-
able type, which stands for any object. With this
type, you can send a message to any object, without
knowing at all what the object is or what it can do.

Like C, this flexibility allows you to perform great
tricks, while forcing the programmer to introduce his
own conventions to prevent errors. But, ahh, there is
fun in danger, isn’t there?

Note: In the following article, I describe a particu-
lar variant of Objective-C known as OpenStep (or
GNUstep, the free implementation of OpenStep).
This is by far the most popular implementation of
Objective-C (there is no standard Objective-C lan-

guage yet ...).

*This article originally appeared in cscene, and Adam Fedor
has permitted us to publish here under GNU FDL. — FSM

1 An Introduction

In truth, there is actually only one syntax addition
to the language — the syntax for sending a message
to an object:

[anObject doSomethingWith: anotherObject];

This statement simply sends the message doSome-
thingWith: to anObject, with an argument of anoth-
erObject. An Objective-C message call can be used
anywhere a C statement can be used, such as in a
conditional statement or within another Objective-C
message. On compilers that support it, Objective-C
messages can be mixed in C++ code, allowing the
programmer to pick and choose the best aspects of
either language.

In addition, there are some keywords that have been
added to allow for the definition and implementation
of classes, such as the definition for the class of which
anObject is a member:

Q@interface MyClass
{
int aVariable;
id subObject;

: NSObject

+ alloc;
+ defaultObject;

- init;

- (int) doSomethingWith: (id)anotherObject;

Q@end



50

Here, Qinterface tells the compiler we are defining
an interface for the class named MyClass, which is a
subclass of the class NSObject. NSObject is the root
class used by GNUstep (The traditional Objective-
C root class Object, is not used at all in GNUstep,
although it is available). The root class is not a sub-
class of any other class.

Although it is not required that a class descend from
a root class like NSObject, this hierarchy is so firmly
ingrained in the language, that it is rare to see classes
that are a root class by themselves. The root class
contains some of the most basic and often used func-
tionality, which gives you the advantage of knowing
that all your classes will responds to these basic mes-
sages. Out of the 300 or so classes in the GNUstep
core library, only two are root classes.

The curly brackets after the class definition enclose
the data that is encapsulated in the class. These vari-
ables are called instance variables, because they are
variables that belong to an instance of a class.

The rest of the interface defines the methods imple-
mented by the class. A method is a description of a
message a class responds to. A ’+’ indicates a class
method. Class methods are often called factory meth-
ods, because typically a factory method is used to cre-
ate or manufacture instances of the class. The most
popular class method is alloc, which allocates space
for an instance of the class (but does not initialize
the class — that is usually reserved for the instance
method init). A ’-’ indicates an instance method.
For example, the doSomethingWith: method defined
above takes one argument, the object anotherObject,
and returns an integer. Class messages can only be
sent to a class. Instance messages can only be sent
to an instance of a class.

2 Dynamic Binding

Objective-C is a language that implements true dy-
namic binding (which is required for a language to

Free Software, Volume 1, Issue 01, Jan, 2002

be truly object-oriented). This means that messages
sent to an object aren’t bound to a specific function
implementation in a specific class until the program
is actually run. Stating this another way, the pro-
grammer does not know how an object will react to
a specific message until the program is actually run.

Dynamic binding comes about because in every
Objective-C program, there is a runtime that works
behind the scenes to connect a specific message with
a specific object. Every time a message like doSome-
thingWith: is sent to an object, the Objective-C run-
time looks up the definition of the class of the object,
finds the function (method) that corresponds to the
message doSomethingWith:, and then calls that func-
tion.

It may seem like this type of lookup could really slow
a program down. In practice, however, most runtimes
are optimized for this sort of lookup, and in general,
it can be shown that message lookup is often not the
dominant time factor of a program (particularly in
GUI programs). Anywhere that time is critical, it’s
possible in Objective-C to pre-bind a message to its
implementation, thus avoiding the expensive message
lookup.

An interesting aspect of a method definition, is that
once a method is defined, that method name and def-
inition are, in a sense global, and can be used any-
where. For instance, say I had an object newObject
that did not recognize the doSomethingWith: mes-
sage. Well I could send the message to the object
anyway, and the compiler would not complain about
it:

id newObject;
// could be any object;

newObject = [[NewObject alloc] init];
// create and initialize the object

[newObject doSomethingWith: anotherQObject];
// send it a message.

Only when the program was run would the Objective-
C runtime discover that newObject did not recognize



Objective-C is Fun

the doSomethingWith: message. However, instead
of immediately issuing an error, the runtime instead
sends another message to newObject, called the for-
wardInvocation: message. This gives newObject a
chance to handle messages sent to it that it doesn’t
understand. In this case, if newObject knew about
anObject, it could forward the message on to anOb-
ject and let it handle the message:

- (void) forwardInvocation: (NSInvocation*)\
anInvocation
{
if ([anObject respondsToSelector: [anInvo\
cation selector]])
return [anInvocation invokeWithTarget: \
anObject];
else
return [self doesNotRecognizeSelector: \
[anInvocation selector]];

}

Here, the variable self refers to the object which re-
ceived the message (similar to the this variable in
C++). anlnvocation is another object which con-
tains all the information about the message that was
sent, including the name of the message (the selector)
and any arguments.

This type of usage is called delegation, and it is a pow-
erful method of implementing various different con-
structs such as multiple inheritance, journaling, and
dispatching messages to dynamically loaded code.

Incidentally, there are proper ways to handle unrecog-
nized message, using Protocols, that allow for compile
time checking and more robust code. Most program-
mers avoid defining un-typed objects unless it’s really
useful. A better way to write the first code segment
would be:

NewObject *newlbject;
// newObject will be an instance of
// the NewObject class
newObject = [[NewObject alloc] init];

51

// create and initialize the object
[newObject doSomethingWith: anotherObject];

In this case, the compiler would issue a warning stat-
ing that newObject does not respond to the message
doSomethingWith:.

\section{Implementation}

I've already given an example of how to implemen-
t a method with the forwardInvocation: method.
That example wasn’t entirely correct. In Objective-
C, a method implementation must be associated with
a certain class by enclosing the implementation be-
tween the keywords @Qimplementation and @end.

@implementation MyClass

- (int) doSomethingWith: anotherObject

{

return [anotherObject multiply: 3 by: 4];
}

@end

The @Qimplementation keyword, is a counterpart to
the @interface keyword (Note that it is not necessary
to indicate that MyClass is a subclass of NSObject.
The compiler already knows this from the interface
definition). You can implement as many methods
as you like within an @implementation block (even
methods that were not described in the class inter-
face). Methods that are implemented in the imple-
mentation section but are not described in the in-
terface become, in essence, private methods that can
only be used by that class and not by another class.

3 Power through Customization

One of the most frustrating aspects of using class-
es written by other people is that these classes of-
ten don’t contain some key functionality that you



52

need. One way to add this functionality (assuming
you don’t have the source to the original class, or
don’t want to change it for some other reason), is to
simply make a subclass and implement the method-
s you need in that class. But this creates another
problem. Now you have to tell everyone else to use
your particular subclass and not the original class.
Or what if someone else has already subclassed this
class and added different functionality. How do you
combine the two subclasses?

Objective-C provides a very simple and elegant way
to add functionality to an existing class using Cate-
gories. A category is defined simply with an Qinter-
face line and the name of the category (e.g. MyAd-
ditionalMethods):

Q@interface MyClass (MyAdditionalMethods)

- (int) doSomethingWith: thisObject andThen)\
With: thatObject;

Q@end

The additional methods are then implemented in a
complementary @implementation section. There is
one restriction, however. You can’t define additional
instance variables, which would change the amount
of data held by the class. Other than this restriction,
the things you can do with categories is incredible
(and bizarre). For instance, if a method is defined
both in the main class interface and a category, the
category implementation wins. A message sent to the
class will use the category implementation and ignore
the original class implementation. If a method is de-
fined in two separate categories, the implementation
that is used is indeterminate, since you never know
which category will be loaded first. In a situation
where dynamic loading is used, this sort of behavior
can create all sorts of headaches for a security con-
scious programmer .. .

Most often, however, categories are used to imple-
ment additional functionality that may be useful to
only one part of the program. For instance, some ad-
ditional methods may be defined to allow a class to

Free Software, Volume 1, Issue 01, Jan, 2002

better interact with the GUI section of the program,
or the distributed objects section of the program.

4 And More...

I've only touched on a few of the features of
Objective-C. I also haven’t answered a lot of typical
first-time Objective-C user questions, like why is the
allocation of space for a class (alloc) separated from
the initialization of the class (init)? How do you get
rid of an object once your done with it (garbage col-
lecting)? Future articles might tackle these questions.

To learn more, I'd encourage you to visit the
GNUstep home page:

http://www.gnustep.org,
or the Apple Developers page at:

http://developer.apple.com/techpubs/macosx
servermacosxserver.html

to look for more documentation on the Objective-C
language and the OpenStep libraries.

[FreeBSD 4.5 is to Release] Daemon News will
be producing a 4 CD set of FreeBSD 4.5 in Feb 2002.
These will be made using the official FreeBSD project
ISO images, packaged in a standard jewel case. It is
reported Daemon News will be the official distributor
of FreeBSD since 4.5 release.

We tested FreeBSD-4.4 in Dec 2001, both GNOME
and KDE are included. It truly works “rock-solid”
stable without X Window system installed, so it is
quite a good option to recommend for running as In-
ternet servers, but for desktop users, it is buggy if
the X-Window system installed on, the system some-
times gets frozen unexpected. Hopefully the 4.5 Re-
lease will be stable to work with X Window for the
desktop and workstation users.




